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Abstract

We present a solution to the general problem of characterizing shad-
ows in scenes involving a uniform polygonal area emitter and a
polygonal occluder in arbitrary position by manifesting shadow
irradiance as a spline function. Studying generalized prism-like
constructions generated by the emitter and the occluder in a four-
dimensional (shadow) space reveals a simpler intrinsic structure of
the shadow as compared to the more complicated 2D projection
onto a receiver. A closed form expression for the spline shadow
irradiance function is derived by twice applying Stokes’ theorem
to reduce an evaluation over a 4D domain to an explicit formula in-
volving only 2D faces on the receiver, derived from the scene geom-
etry. This leads to a straightforward computational algorithm and
an interactive implementation. Moreover, this approach can be ex-
tended to scenes involving multiple emitters and occluders, as well
as curved emitters, occluders, and receivers. Spline functions are
constructed from these prism-like objects. We call them general-
ized polyhedral splines because they extend the classical polyhedral
splines to include curved boundaries and a density function. The
approach can be applied to more general problems such as some of
those occurring in radiosity, and other related topics.

CR Categories: I.3.0 [Computer Graphics]: General; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism;

Keywords: rendering, shadow algorithms, illumination, visibility
determination

1 INTRODUCTION

While computing shadows from a single point source is relatively
simple and goes back to the early days of graphics when the light
source was moved away from the eye position, the accurate repre-
sentation of shadows resulting from area sources is quite compli-
cated, as Soler and Sillion [38] point out:

The calculation of detailed shadows remains one of
the most difficult challenges in computer graphics, es-
pecially in the case of extended (linear or area) light
sources.
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In this paper we present a solution to the general differential area
to polygon form factor in the presence of a polygonal occluder, by
representing the induced irradiance as a spline function. We gen-
eralize the polyhedral spline [4, 16, 32] to obtain our result. The
polyhedral spline is defined as a distribution. A geometric inter-
pretation of this definition involves regarding the splines as cross-
sectional volumes of higher dimensional polyhedra [14]. The more
familiar univariate and tensor product B-splines are special cases of
the polyhedral spline.

To introduce the fundamental ideas of our approach, we begin
with an analysis in Flatland [26], where the higher dimension con-
struction can be directly visualized and more easily understood.
Then we work through the construction of a generalized perspec-
tive prism in 4D associated with an element that can be either an
emitter or an occluder. The 4D perspective prism is defined so that
the 2D cross-section taken through any point(x; y) is a perspective
view of the element from the point(x; y; 0). A shadow function can
be built by considering boolean operations on such prisms. In the
case where the emitterE, occluderO, and receiverR are all paral-
lel, the intersection region of theE andO prisms is isomorphic to
the 4D Cartesian productO � E, whereO andE are taken as 2D
polygons. To bolster confidence for looking into 4D, we observe
that the projection ofO � E ontoR generates all the discontinuity
lines of the shadow structure.

The boolean combination of theO- and E-prisms gives a
polyhedron-like object in 4D which is used to define a polyhe-
dral spline function. At each point(x; y) in the plane the value
of the spline is obtained by integrating a density function over the
2D cross-section at(x; y). With a proper definition of the density
function this spline gives us the exact partially occluded irradiance
at (x; y). Using Stokes’ theorem we derive a recurrence relation
that yields a closed form solution for the irradiance function.

1.1 Related Work

Accurate computation of shadows has been a rich and active area of
graphics research since near the beginning of the field. In 1990 Woo
et al. [44] made an extensive survey of relevant techniques. Since
then many techniques have been aimed at faster or more accurate
computation.

Methods that are based on a single point light source create hard
shadows. A typical example of such a method is used in ray trac-
ing, where a ray is cast between a point lying on the surface and a
specified light source. The algorithm must determine if there is an
occluder between it and the light source [42]. Soft shadows caused
by area light sources are simulated by stochastically selecting a set
of sample points on the source and casting several rays towards
them from the surface [11, 36]. Exact evaluation can be obtained
by clipping all the occluders against the area source [18, 33].

Several methods consider the view from a point light source. The
shadow buffer creates a discrete depth image from the point light
source view [43], using only a single point. Shadow volumes are
constructed from a point light source and polygonal occluders [13]
or curved boundary occluders [27], from which a point can be tested
for its visibility in object space. Soft shadows can be approximated
in a similar manner to the ray tracing method, by breaking the light

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.  To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA  USA
Copyright ACM 1999   0-201-48560-5/99/08 . . . $5.00

155



source into several point samples [7].
The radiosity method theoretically includes the computation of

soft shadows. However, the method requires the reconstruction of
irradiance functions, for which no general closed form is known.
Methods to compute radiosity use a mesh of finite surface elements,
then “form factors” representing the exchange of energy between
mesh elements are computed. Frequently, the implementation as-
sumes a constant radiosity distribution across each surface patch
and finite element, then the values are interpolated across each mesh
element. Meshing surfaces without considering the shadow struc-
ture can lead to inaccurate solutions and “shadow leaks”. The dis-
continuity meshing approach [17, 25, 30] was developed to avoid
these problems. For each source, a discontinuity mesh is created on
the scenes surfaces (receivers). The mesh includes all lines where
the illumination function has discontinuities, including the effects
of boundaries of multiple occluders. Meshing concerns have been
a principal driving force behind shadow research.

It was recognized quite early that solutions could be improved if
the form factors could be computed analytically. Analytical solu-
tions have been determined for specific geometries [28, 35]. Gener-
ally such solutions assume that each surface is flat and fully visible
from the other. Baumet al [3] proposed computing the unoccluded
point to polygon form factor analytically. To avoid violation of vis-
ibility assumptions, they proposed that each source patch be subdi-
vided until all components were either fully visible or fully hidden
from all elements in the environment.

Many current methods to compute form factors approximate
them with an upper bound calculation, that is, they assume that
an unoccluded radiosity kernel can be multiplied against a visibil-
ity factor, which gives the fraction of the area of the light source
element visible from the receiver [9, 24, 40]. The point to poly-
gon form factor is assumed to have constant exitance on the source.
Then it is separated into the unoccluded point to polygon form fac-
tor integral and a visibility factor integral.

Arvo [1] provided hope that a closed-form formula for shadow ir-
radiance might exist by developing a clean, elegant closed-form for-
mula for the irradiance Jacobian due to a partially occluded polyg-
onal source. Recently Soler and Sillion [38] showed that when
polygonal emitter, occluder, and receiver are all parallel to each
other, shadow computations on the receiver can be written exactly
as a convolution. This method uses the characteristic functions of
both the emitter and the occluder, and computationally uses fast
Fourier transforms to compute convolutions. When the elements
are not parallel to each other, the method requires approximating
the elements by parallel elements, called virtual geometry. Since
the error can be estimated, it is suggested that when the error is too
large, the elements should be subdivided and new orientations and
approximating parallel sub-elements should be chosen until the er-
ror is within bounds. They compute irradiance using the radiosity
kernel-visibility factor approximation.

Polyhedral splines have been well studied for special polyhedra
like simplices, boxes, and cones; de Boor and H¨ollig’s original pa-
per [4] contains references and a recurrence relation valid for more
general polyhedra than simplices, boxes, and cones. Simplex and
box splines have been used in geometric modeling [19]. McCool
has used polyhedral splines for signal processing and rendering an-
alytically antialiased polygons, and also suggested they might be
used for penumbral approximation [31, 32].

2 FLATLAND

We begin by carrying through our formulation in Edwin Abbott’s
“Flatland.” In Flatland, surfaces become plane curves, planes be-
come lines, and polygons become line segments [26]. Irradiance is
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Figure 1: A general irradiance situation in Flatland. To compute
the irradiance atr (t), we transform to the origin and rotate so that
the surface normal is(0; 1). Then the transformed emitter is pro-
jected onto the liney = 1, where it is a line segment projectively
equivalent to the apparent silhouette ofT (E). The transformation
and resulting objects are all functions oft.

computed from the integral

I(r) =

Z
C

L(r; �) cos � d� (1)

whereL(r; �) is the radiance coming intor from direction�, and
C is the open semi-circle above the surface atr.

2.1 Formulation of Irradiance

Consider a receiver surfaceR described by a plane parametric curve
r(t) = (x(t); y(t)) and a normal vectorn(t) = (nx(t); ny(t)). Let
E be a uniformly emitting surface, situated above the receiverR,
as shown in Figure 1. In order to compute the irradiance at a point
r(t0) = (x0; y0) onR corresponding to a parameter valuet = t0
we proceed as follows:

1. Transform the scene such that(x0; y0) is mapped to the ori-
gin, and such that the unit normaln(t0) becomes parallel to
they-axis. This transformation, which we callT , is a trans-
lation followed by a rotation, which transformsE into a new
positionT (E).

2. LetE� be the perspective projection ofT (E) onto the line
y = 1 with the origin as the center of projection.

We then have

E� = f(x; 1) : p�1(t) � x � p�2(t)g
where

p�i (t) =
wi;1(t)

wi;2(t)
; i = 1; 2;

andwi(t) = (wi;1(t); wi;2(t)) are the silhouette points ofT (E)
as seen from the origin. The objectT (E) and the projectionE�

produce the same irradiance at the origin, which is the irradiance at
r(t). Denoting this irradianceIE(r(t)) by I(t), we have

I(t) = K

�����
Z p�

2
(t)

p�
1
(t)

cos � cos �0

d(x)
dx

����� ;
whereK is a constant,d(x) the distance between the origin and the
point (x; 1), � the angle between the ray(0; 0)! (x; 1) and they-
axis, and�0 the angle between the same ray and the normal toE�.
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Figure 2: Construction of the strip for a parallel polygon in Flatland.
(a) For irradiance atx = �2,E is projected toE� throughx = �2,
thenE� is rotated to the slice of theME prism; (b) The slices as a
function ofx sweep outME .

SinceE� is normal to they-axis we have�0 = �, cos � = 1=d(x),
andd(x)2 = 1 + x2. It follows that

I(t) = K

�����
Z p�

2
(t)

p�
1
(t)

dx

(1 + x2)
3

2

����� = K j
(p�2(t))� 
(p�1(t))j ;

(2)
where


(x) =
xp

1 + x2
:

The functionI(t) can be interpreted geometrically. Suppose for
simplicity thatp�2(t) � p�1(t) for all t. We consider the integral

Z p�
2
(t)

p�
1
(t)

!(y)dy;

where

!(y) =
1

(1 + y2)
3

2

:

LetME be the 2-dimensional strip

ME = f(t; y) : �1 < t <1; p�1(t) � y � p�2(t)g:

For fixedt the integral is obtained by taking a vertical cut through
ME at t and integrating the density function from the lower bound-
ary ofME to the upper boundary ofME . ThusI(t) is the weighted
length of this cut att.

2.2 Irradiance in the Presence of Occluders

Suppose that we extend the scene above by also including an oc-
cluderO. In the same way as we did forE we obtain an infinite
stripMO corresponding to the occluder. Where the occluder strip
overlaps the emitter strip, the covered portion of the emitter is not
visible. The occluded irradiance can be computed from the integral
of the same density function!(y) over the uncovered portion of the
strip. This portion of the strip is the set differenceME �MO .

If the set differenceME�MO is endowed with the density func-
tion !(y), the integral over each slice of the strip produces the un-
occluded irradiance at that point, as in Figure 4(b). This approach
generalizes. Suppose we haven occludersO1; : : : ; On situated be-
low E. The irradiance atr(t) can be found by integrating the same
density function over the set

ME �MO1
� � � � �MOn :
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Figure 3: Any Flatland polygon parallel to the floor generates a
strip. (a) A polygon closer to the floor generates a thicker and more
steeply sloped strip. (b) The cyan strip covers the yellow strip in
a way that encodes the occlusion of the yellow emitting polygon
by the occluding cyan polygon. (c) A vertical slice of the two strips
(shown atx = �1) contains a snapshot of the scene. The uncovered
portion of the yellow slice corresponds to the unoccluded portion
of the emitter. (d) Slices of the intersection of the strips (the black
parallelogram) give the occluded portion of the emitter.

If there are also multiple emitters, the total irradiance is computed
by summing the contributions from the individual emitters; how-
ever, all other emitters must be treated as potential occluders, and
there is also the issue of front-and-back culling.

The advantage of this construction is that all the local visibility
calculations can be replaced by a single set operation that handles
the occlusion geometry for the entire floor. Set differences may not
be easy to compute in general, but in the restricted case where the
receiver is a line and the objects line segments, the geometry turns
out to be very clean.

2.3 Polygonal Objects

Suppose nowE andO are one-dimensional polygons (line seg-
ments) and the receiver is the liney = 0 in Flatland. In this case,
the parameterization ofr(t) is simply r(t) = (t; 0) and we sim-
ply usex for the position on the receiver. The transformationT
becomes merely a translation byx and the subsequent projection
E ! E� can be computed directly: ifE has vertices(x0i; y

0

i),
i = 1; 2 then

p�i =
x0i � x

y0i
; i = 1; 2:

Equation (2) can now be evaluated in closed form. Furthermore,
eachp�i as a function ofx traces out a line, so the strip forME is
an (unbounded) polygon.

To take occlusion byO into account, the stripMO is constructed
for O. The partially-occluded irradiance can be computed from

I(x) = SE�(x)� SE�\O�(x);
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(a) (b)

Figure 4: (a) When endowed with the appropriate density func-
tion, the integral over each slice produces the irradiance (the smooth
curve). (b) The occluded irradiance is the integral over the set dif-
ference of the emitter strip and the occluder strip. The removed
portion, the intersection of the strips, is a parallelogram.

-2 -1 0 1 2

(a)

-2 -1 0 1 2

(b)

Figure 5: A non-parallel situation. (a) The strips are actually Flat-
land cones, but their intersection remains a four-sided quadrilateral.
(b) The integral of the density function over cross-sections of the in-
tersection (outlined in black) produces the subtractive shadow irra-
diance. One advantage of this geometry is that the density function
is independent ofx.

where

SQ(x) =

Z b(x)

a(x)

!(y)dy

in caseQ is the line segment from(a(x); 1) to (b(x); 1).
The value ofSE�\O�(x) is therefore the integral of the irradi-

ance density function!(y) over the cut atx of the intersectionof
the stripsMO \ME . This intersection has four vertices, one for
each pair of edges ofMO andME . In the special case whereO
andE both happen to be parallel to thex-axis,MO andME are
both strips of constant width and the intersectionMO \ME is a
parallelogram as shown in Figure 2. In the more general case, the
intersectionMO \ME can be shown to be a quadrilateral, as in
Figure 5. The quadrilateral is not self-intersecting as long as the
line containingE do not intersectO, and vice-versa.

The formulation of irradiance as the integral over a cut of a two-
dimensional object casts it as a weighted polyhedral spline. The
constructions in this subsection show that both unoccluded and par-
tially occluded irradiance have this formulation. What is the advan-
tage? First of all, the formulation of irradiance in terms of a poly-
hedron encodes all the visibility information from the receiver in to
a single, easily described two-dimensional object, as suggested in
Figure 6. Second, and more importantly, polyhedral splines can be
evaluated in closed form without actually finding the intersection of
the cut [4].

I

II

III
IV

(a) (b)

Figure 6: (a) An occluder partitions space into regions of visibility.
In this figure, the umbra does not reach the receiver. (b) The regions
of visibility on the plane are stored in the intersection quadrilateral.
The projection of the edges of the quadrilateral ontoy = 0 give
visibility information for each object vertex; the projected vertices
are the points of discontinuity of the irradiance.

3 THE PERSPECTIVE PRISM

In this section we construct the perspective prism analogous to the
one in flatland, which stores the apparent geometry of an arbitrary
polygon inR3 at every point on the floorz = 0. The construc-
tion pertains to a scene elementQ which is either an emitter or an
occluder.

3.1 Definition by Cross-Section

SupposeQ is a planar polygon having verticesvi = (xi; yi; zi) for
i = 1; : : : ; n. Furthermore, assumeQ is situated strictly above the
floor, so that eachzi > 0. We define a subsetMQ of R4 in terms
of its 2D cross-sectionsP(x;y) \MQ, where for fixed(a; b)

P(a;b) = f(a; b; z; w) : z; w 2 Rg

is an(a; b)-slice.
For each (x; y) the cross-section is given by the polygon

hV1; : : : ;Vni including its interior, where

Vi = (x; y;
xi � x

zi
;
yi � y

zi
); i = 1; : : : ; n: (3)

We observe that the last two components ofVi are the perspective
transformation of(xi; yi) with the origin moved to(x; y).

For later use we defineQ� as the polygon with vertices((xi �
x)=zi; (yi � y)=zi; 1) for i = 1; : : : ; n. ThusQ� = Q�(x; y) is a
perspective transformation ofQ including its interior toz = 1 with
the origin moved to(x; y).

3.2 The Geometric Structure of the Perspective
Prism

Describing the cross-sections ofMQ is sufficient to properly define
the prism as a point set, but the slices give only a local characteri-
zation, and, for our purpose, we need a quantitative understanding
of the boundary of all ofMQ.

Supposei is fixed. As(x; y) varies, theith vertexVi = Vi(x; y)
can be interpreted as a 2-surface inR4 that is in fact a 2-plane.

Each apparent edge ofQ is a line segment that is a function of
(x; y), and can be parameterized by

Ei(x; y; t) = (1� t)Vi(x; y) + tVi+1(x; y): (4)
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Figure 7: The product polyhedronO� E is formed by sweeping a
copy ofE (the red triangle) acrossO (the blue pentagon) or vice-
versa. The boundary is thus formed by sweeping each object along
each edge of the other, resulting in three-dimensional prisms. Oc-
cluder prismj shares a rectangular “side” with emitter prismi.

Equation (4) is a parameterized 3-surface inR4 with x; y 2 R

and t 2 [0; 1]. That is, each apparent edge ofQ “sweeps out” a
3-surface inR4. Each slice is a polygon, and the boundary of the
polygon consists exactly of its edges, so the boundary ofMQ is
therefore the union of the sweep-surfaces of all the apparent edges.
This shows thatMQ is actually a four-dimensionalmanifold with
boundaryembedded inR4.
MQ has even simpler structure ifQ happens to be parallel to the

floor. In this case,zi = h for eachi, whereh is the height ofQ
above the floor, and the vertex surface functionsVi becomes

2
6664

x
y

xi � x

zi
yi � y

zi

3
7775 =

1

h

2
64

0
0
xi
yi

3
75 +

2
66664

x
y

�x
h

� y
h

3
77775

ThusMQ can be viewed asQ rotated so that it is parallel to the
zw-plane, scaled by1=h, and swept along a 2-plane inR4. The
edge surface functions, from (4)

Ei(x; y; t) =

2
6664

x
y

xi � x

h
+ t

xi+1 � xi
h

yi � y

h
+ t

yi+1 � yi
h

3
7775 (5)

with the domain oft extended to all ofR, become proper hyper-
planes (affine images ofR3) inR4. Therefore the perspective prism
MQ is a genuine, albeit unbounded, four-dimensional polyhedron.

4 THE OCCLUDER AND EMITTER PRISM

We now proceed to the situation where there is an occluding poly-
gon in the scene. Suppose we have inR3 a uniformly emit-
ting polygonE = he1; : : : ; emi and an occluding polygonO =
ho1; : : : ; oni. We assume thatE lies strictly above the plane ofO,
and also that bothE andO lie strictly above the floor.

4.1 Algebra of Perspective Prisms

To analyze partially occluded emitters we need a 4D objectM
whose(x; y) cross-sections stores the geometry of thevisiblepor-
tion of the emitter. At each floor point(x; y) thevisible portionof
the apparent emitting polygon is simplyE� � O�, whereE� and

Figure 8: The five emitter-prism facets ofO�E. Adjacent emitter
prisms share a common emitter face.

Figure 9: The three occluder-prism facets ofO � E. Adjacent
occluder prisms share a common occluder face.

O� areE andO projectively transformed through(x; y). From the
definition of the perspective prism it follows immediately that

M = ME �MO :

Dealing with occlusion is now reduced to a tractable problem of
performing booleans of the prisms.

4.2 The Structure of O �E

If E andO are both parallel to the floor, thenMO andME are both
four-dimensional “prism” polyhedra, and consequently their inter-
section is another polyhedron. It can be shown that the intersection
of the two “prisms” is isomorphic to the product polyhedronO�E,
as in Flatland. In the more general case of non-parallel polygons the
boundary structure is topologically equivalent toO � E.

The product polyhedronO � E can be constructed by sweep-
ing E, rotated to thezw-plane across all ofO, or vice-versa. The
boundary ofO�E can be viewed asE swept along each edge ofO,
and vice-versa, as suggested in Figure 7. (Of course, the object is
really four-dimensional, so these figures are only a representation.)
SweepingE along an edge ofO produces a prism in the shape of
E, a three-dimensional polyhedron embedded inR4. Similarly,
sweepingO along an edge ofE produces an “occluder” prism. The
boundary ofO � E therefore consists ofn emitter prisms, andm
occluder prisms, each a three-dimensional polyhedron situated in
R
4. These prisms are then+m facetsof O � E.

Each emitter prism has two emitterfaces, which are two-
dimensional polygons situated inR4. Adjacent emitter prisms
share a facet, and there is thus exactly one emitter face for each oc-
cluder vertex, and vice-versa. The rectangularsidesof the prisms
are also proper two-dimensional polygons situated inR

4. Occluder
prismj shares exactly one side with emitter prismi, hence there are
m � n sides. Then emitter faces, them occluder faces, and the
m� n sides together form the boundaries of the facets ofO � E.
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5 IRRADIANCE

Our goal is to build a shadow function that produces exact irradi-
ance everywhere. We review what the irradiance quantity is for a
scene with polygonal occluders and emitters.

We recall that the irradiance from a uniformly emitting surface
S, which is not self-occluding as viewed from a point(x0; y0) on a
receiver, can be computed [1] from the surface integral

I(x0; y0) = K

Z
S

cos �0 cos �

kr(x; y)k2 dS; (6)

wherer(x; y) = (x�x0; y�y0) is the ray from(x0; y0) to a point
(x; y) on S, �0 is the angle between the normal to the receiver at
(x0; y0) andr(x; y), while � is the angle betweenr(x; y) and the
normal toS at (x; y). The constantK is a physical parameter ofS.
For simplicity we hereafter assume thatK = 1.

When the emitting surface is a polygon, the integral in (6) can be
shown to be equal to

I(x0; y0) =

Z
E�

1

(1 + x2 + y2)2
dx dy (7)

whereE� = E�(x0; y0) is the perspective transformation ofE
onto the planez = 1 with the origin moved to(x0; y0). For each
polygonQ� in the planez = 1 we define the function

SQ� =

Z
Q�

1

(1 + x2 + y2)2
dx dy: (8)

In an unoccluded scene with a emitterE the irradiance at a point
(x0; y0) on the receiver is simplyI(x0; y0) = SE�(x0; y0). In
a scene which in addition has an occluderO it follows from the
algebra of perspective prisms that

I(x0; y0) = SE��O� = SE� � SE�\O� : (9)

This is another way of saying that the net irradiance at the point
(x0; y0) on the receiver is obtained by subtracting the occluded ir-
radiance from the full unoccluded quantity.

6 GENERALIZED POLYHEDRAL
SPLINES

In this section we develop some mathematical tools that are needed
to describe shadows. SupposeB is a bounded convex polyhedral
body inRn whose boundary@B is a disjoint union of finitely many
hyperplanesFi , and suppose! = !(y) = !(y1; : : : ; yn) is a
function ofn variables which is continuous and integrable overB .
Given an integers � n letQ be the projectionRn ! R

s given by
P (y1; : : : ; yn) = (y1; : : : ; ys). We define a generalized polyhedral
splineNB;!(x) of s variables such that for all sufficiently smooth
functions� of s variables with local support

Z
R
s

NB;!(x)�(x)dx =

Z
B

!(y)�(Py)dy: (10)

Note that (10) definesNB;! as a distribution which we assume can
be defined as a continuous function. Ifn = s we then have

NB;!(x) = �B(x)!(x); (11)

where�B(x) = 1 if x 2 B and 0 otherwise.
If ! = 1 the functionNB;! is the multivariate polyhedral

spline [4, 32]. We will use more general densities! for the defi-
nition of our shadow irradiance functions.

By writing the right-hand side of (10) as an iterated integral we
obtain a common geometric interpretation ofNB;!

NB;!(x) =

Z
R
n�s

�B(x; z)!(x; z)dz: (12)

In this interpretation the value of the spline at a pointx 2 R
s

is obtained by integrating the density function! over an � s-
dimensional cross-section ofB located atx. This cross-section is
the intersection ofB and anx-slice inRn.

To make the above formula tractable for evaluation we apply
Stokes’ theorem to (10) and obtain

NB;!(x) =
X
i

sgn (vi)NPn
n�1

(Fi);
��i(x): (13)

HereFi is faceti of B, having outward normalni, vi is thenth
component ofni, sgn(t) is equal to 1,0,-1 ift > 0; t = 0; t < 0,
respectively,
 is an anti-derivative of! with respect to the last
variable, Pn

n�1(Fi) is the canonical projection ofFi to Rn�1,
and�i is a function ofn � 1 variables describingFi in the form
�i(y1; : : : ; yn�1) = (y1; : : : ; yn�1; yn), whereyn is an equation
for the hyperplaneFi in terms ofy1; : : : ; yn�1. The sgn function
handles a reversal of the orientation of facetFi in the projection to
the lower space.

We note that the functions on the right of (13) are splines ofs
variables defined using objects inRn�1. We can apply this formula
recursively to reducen. The recurrence stops whenn reachess, in
which case the spline is given by (11).

The unweighted polyhedral spline recurrence (! = 1) developed
by de Boor and H¨ollig [4], as well as the polynomially weighted
recurrence of McCool [32] both are derived following an identity
of Hakopian. Ours takes a different approach, based directly on
Stokes’ theorem. The main use for our formula is to derive the
explicit shadow irradiance function in the next section.

6.1 Extension to Non-Polyhedral Objects

The recurrence (13) can be extended beyond proper polyhedra, to
certain general manifolds having the same general structure as poly-
hedra, inasmuch as their boundaries consist of facet-like manifolds,
each of one lower dimension. As we shall see, the general occluded
polygonal irradiance problem leads to manifolds of this form. The
primary difficulty of this extension is that the “facets” may not be
expressible as explicit surfaces of their projections, and when they
are, they are no longer the simple affine hyperplane functions as in
the polyhedron case. Problems such as this can sometimes be cir-
cumvented by partitioning the boundary facets into disjoint pieces;
however, in the object we are about to develop, it happens that we
can effectively ignore this potential problem.

6.2 The Irradiance Function

In Section 5 we gave an explicit formula for the irradiance functions
based on the geometry of prisms inR4. In this section we have
developed the appropriate spline theory to construct the irradiance
functions. The remaining task is to combine the two approaches to
show that the irradiance function is, in fact, a spline. First consider a
scene with an unoccluded emitter. The irradiance at a point(x0; y0)
on the receiver is given in (7), which we write in the form

I(x0; y0) =

Z
E�

!(x0; y0; z; w)dz dw;

with

!(x0; y0; z; w) =
1

(1 + z2 + w2)2
: (14)
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Figure 10: The shadow discontinuity lines consist ofE projected
through each point ofO, and vice-versa.

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(a)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(b)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(c)

Figure 11: The floor shadow structure for a non-parallel configura-
tion. Heren = 4 andm = 3. (a) The three occluder images; each
has a counter-clockwise orientation. (b) The four emitter images;
each has a counter-clockwise orientation. (c) Two of the side im-
ages:S1;1 has a negative (clockwise) orientation,S3;1 is positively
oriented.

Since E� is essentially the cross-section of the prismME at
(x0; y0) we obtain

I(x0; y0) =

Z
R

2

�ME
(x0; y0; z; w)!(x0; y0; z; w) dz dw:

Hence from (12) withn = 4; s = 2 we obtain

I(x0; y0) = NME ;!(x0; y0); (15)

and we have demonstrated that the irradiance function is a spline.
This agrees with the fact that a shadow is a piecewise smooth func-
tion with jumps in derivatives across the discontinuity lines, and
the nature of spline functions. The above derivation holds equally
well in the more general situation including multiple elements. For
example in the situation described in (9) we have

I(x0; y0) = NME�MO ;!(x0; y0): (16)

7 THE SHADOW EQUATION

Using the recurrence relation (13) we can actually give a closed-
form expression for the irradiance function corresponding to a
scene with a single planar polygonal emitter and a planar polyg-
onal occluder, in terms of the space coordinates of the vertices

O = h(x1; y1; z1); : : : ; (xn; yn; zn)i
E =



(x01; y

0

1; z
0

1); : : : ; (x
0

m; y
0

m; z
0

m)
�
:

We assumeO andE are convex, andO lies strictly above the floor,
and the plane ofO lies strictly belowE. We define the direction of
the normalnE of E to be opposite the direction of emittance. (This
is the opposite of the usual convention, but we need the emitter
projections onto the plane to have counter-clockwise orientation.)
The region on the plane in which the emitting side ofE is visible is
the set

RE �
�
(x; y) 2 R2 : (x; y; 0) � (nE � (x1; y1; z1)) > 0

	
(17)

The formula presented in this section is valid on the planar region
RO \RE .

The shadow equation is expressed in terms of the characteristic
functions of the projected 2D boundary faces ofO � E. To define
these polygons, first define theshadow nodes

vij �
�
z0jxi � zix

0

j

z0j � zi
;
z0jyi � ziy

0

j

z0j � zi

�
: (18)

Geometrically,vi;j is the point on the floor whereoi andej appear
to coincide. The shadow polygons consist ofm occluder images
Oj, n emitter imagesEi, andmn quadrilateralsSij , as shown in
Figures 10 and 11. In terms of the shadow nodes,

Ei = hvi;1; : : : ; vi;mi
Oj = hv1;j ; : : : ; vn;ji
Sij = hvi;j ; vi+1;j; vi+1;j+1; vi;j+1i ;

Thez andw coordinates of the vertices of the(x; y)-slices of the
objects give the apparent geometry from(x; y). Define (cf. Sec-
tion 3.1.)

pi(x; y) = (pi;1; pi;2) =
�
xi � x

zi
;
yi � y

zi

�
(19)

p0j(x; y) = (p0j;1; p
0

j;2) =

�
x0j � x

z0j
;
y0j � y

z0j

�
: (20)

It is convenient to introduce

ei(x; y) = (ei;1; ei;2) = pi+1(x; y)� pi(x; y)

e0j(x; y) = (e0j;1; e
0

j;2) = p0j+1(x; y)� p0j(x; y):

For the evaluation of the spline, the function defining theith facet
must be written in the formwi(x; y; z) = mi(x; y)z + bi(x; y),
where forO,

mi(x; y) =
ei;2
ei;1

bi(x; y) = pi;2 � ei;2
ei;1

pi;1;

and forE,

m0

j(x; y) =
e0j;2
e0j;1

b0j(x; y) = pj;2 � e0j;2
e0j;1

pj;1:

The second iteration of (13) requires the equations for the bound-
ary of the facets ofMO which are the 2-surfaces traced out by the
vertices ofO� andE� in MO andME . These are essentially given
by (3). There are also the extra boundary 2-surfaces traced by the
intersection of edgesi of O� andj of E�, which can be computed
from

 ij(x; y) =
ei;1e

0

j;2pj;1 � e0j;1(ei;2pi;1 + ei;1(pj;2 � pi;2))

ei;1e0j;2 � ei;2e0j;1
(21)

Finally, we need the twice-integrated density function

F (z; u; v) =

v arctan
�

uv+z+u2zp
1+u2+v2

�
2
p
1 + u2 + v2

+

z arctan
�

v+uzp
1+z2

�
2
p
1 + z2

(22)
The irradiance on the planez = 0 is then

I(x; y) = NME ;!(x; y)�NMO\ME ;!(x; y)
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Figure 12: A non-parallel emitter/occluder configuration, showing
the irradiance with discontinuity lines. BothE andO are outlined
for clarity.

where! is given by (14). Applying (13) twice it can be shown that

NMO\ME ;!(x; y) =

mX
j=1

�Ôj (x; y)
�
F (p0j;1;m

0

j ; b
0

j)� F (p0j;1;m
0

j�1; b
0

j�1)
�

+

nX
i=1

�Êi(x; y) [F (pi;1;mi; bi) � F (pi;1;mi�1; bi�1)]

+

nX
i=1

mX
j=1

o(Sij)�Ŝij (x; y)
�
F ( ij ; mi; bi) � F ( ij ; m

0

j ; b
0

j)
�

(23)
Here Q̂ is the polygonQ excluding edges whose oriented angle
with the x-axis is greater than zero, and less than�. The o(Q)
function is the orientation of the polygonQ: o(Q) is1 if the vertices
are in counter-clockwise order, and�1 otherwise.

Inspection of the equation forNMO\ME ;!(x; y) reveals the first
summation is in fact the unoccluded irradiance, hence the irradiance
can be expressed directly in the following shadow equation.

I(x; y) =

mX
j=1

h
1� �Ôj (x; y)

i �
F (p0j;1;m

0

j ; b
0

j)� F (p0j;1;m
0

j�1; b
0

j�1)
�

�
nX
i=1

�Êi(x; y) [F (pi;1;mi; bi) � F (pi;1;mi�1; bi�1)]

�
nX
i=1

mX
j=1

o(Sij)�Ŝij (x; y)
�
F ( ij ; mi; bi) � F ( ij ; m

0

j ; b
0

j)
�
:

(24)
The shadow spline functionI(x; y) is therefore a collection of

smooth functions supported on the shadow polygonsOj, Ei and
Si;j.

Images demonstrating the formula are shown in Figures 12, 13.

Figure 13: A typical difficult case, where theO (nearly) touches
the floor. The direct shadow formula fails if the objects actually
touch, but they may come arbitrarily close. Here the occluder has
been lifted slightly, to reveal theC0 discontinuity along the line of
contact.

These images were rendered using ray tracing, with the irradiance
on the surfaces calculated directly using the shadow equation.

The formula extends to multiple occluders as long as their shad-
ows do not interact. The facets of a convex polyhedral occluder
meet this, and the requirements of the shadow equation (if the
normals point inward), so the formula can be extended to convex
polyhedral emitters and occluders, as demonstrated in Figures 14
and 15.

8 FUTURE WORK AND CONCLUSION

The general formulation presented in this paper is rich in possi-
bilities worthy of deeper investigation. As a first step, we hope to
generalize the non-interfering occluder formula to take into account
multiple objects and their interactions with each other. Beyond this,
we are encouraged by the possibility of producing an analytic for-
mula for objects more general than polygons, and receivers more
general than portions of a plane. Furthermore, the ideas generalize
to non-uniform emittance and arbitrary BRDFs.

8.1 Conclusion

In this paper we analyze the essential mathematical structure of
shadows on a surface and show that the natural place to understand
them is in a higher dimensional space. We show that the general
problem of calculating the irradiance function for the shadow cast
by a single polygonal occluderO from a polygonal emitterE in
general position leads to a weighted (generalized) polyhedral spline
function, and that the Cartesian productO � E provides the struc-
ture necessary to compute the shadow. To compute the irradiance
for non-parallel configurations ofE andO, ordinary polyhedral
splines must be generalized. The resulting splines are built on ob-
jects which are deformations of polyhedra in higher dimensions,
instead of the usual flat-faced structures.
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Figure 14: The shadow of a regular dodecahedron cast by a trian-
gular emitter. The irradiance is computed by subtracting the value
of (23) for each face from the unoccluded irradiance; this works
for convex polyhedra, because the edges do not interact under the
emitter.

Using Stokes’ theorem to reduce the Euclidean dimension of the
integration problem, we arrive at a closed-form formula for eval-
uating the irradiance function, not just the partial visibility quan-
tity, as an exact analytical expression. The wire frame structure
of the 4D object by itself produces the shadow discontinuity lines
when projected to the floor. That is, the projection method natu-
rally specializes to the produce the discontinuity graph described
by Nishita and Nakamae [33]. WhenE, O, and the floor are all
parallel and a constant weighting function is specified, the spline
specializes to anO � E (prism) polyhedral spline that yields the
convolution presented by Soler and Sillion in their shadow algo-
rithm [38]. Although it is a common simplifying approximation to
factor out visibility from the irradiance integral, there is no penalty
in our method for doing it exactly.

Although exact shadows may not be necessary in many situa-
tions, they are important because their structure gives fundamental
understanding. Knowing their exact behavior also provides a way
to compute the error in approximate methods. And finally, the di-
rect evaluation of the explicit formula is fast enough to compete
with approximate algorithms.

A benefit of studying shadows in the higher dimensional con-
text with the constructions provided is that the approach general-
izes beyond the solution for a single emitter and occluder in arbi-
trary configuration. This approach also generalizes theoretically in
a straightforward manner to more complicated situations involving
curved and multiple emitter and occluder elements, at the expense
of complicating the geometry. To carry forward this approach for
curved and nonuniform elements we must again use generalized
polyhedral splines.

Computing irradiance quantities for shadow functions is equiv-
alent to computing the differential area to polygon form factor in
the presence of an occluder. Although we do not take the space
to develop the details, one can see that this approach may be used
in radiosity. There is also a connection between the 4D emitter or

Figure 15: The shadow of a dodecahedron cast by three symmetri-
cally placed emitters colored red, green, and blue. The total irradi-
ance is the sum of the contributions from each emitter.

occluder prisms and some image based rendering algorithms.
Considering shadow irradiance functions as higher dimension

generalized polyhedral splines has lead to several advances in un-
derstanding and computation. Although somewhat abstract, the
approach described herein, which appears to be quite general and
powerful, seems rather promising as a basis from which to do fur-
ther work in this area and related problems.
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