
?

Computer Graphics, 26,2, July 1992

Fast Shadows and Lighting Effects Using Texture Mapping

Mark Segal
Carl Korobkin

Rolf van Widenfelt
Jim Foran

Paul Haeberli
Silicon Graphics Computer Systems*

Abstract

Generating images of texture mapped geometry requires projecting
surfaces onto a two-dimensional screen. If this projection involves
perspective, then a division must be performed at each pixel of
the projected surface in order to correctly calculate texture map
coordinates.

We show how a simple extension to perspective-comect texture
mapping can be used to create various lighting effects, These in-
clude arbitrary projection of two-dimensional images onto geom-
etry, realistic spotlights, and generation of shadows using shadow
maps[10]. These effects are obtained in real time using hardware
that performs correct texture mapping.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation; 1.3,7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism - colot shading,
shadowing, and texture

Additional Key Words and Phrases: lighting, texturemapping

1 Introduction

Producing an image of a three-dimensional scene requires finding
the projection of that scene onto a two-dimensional screen, In the
case of a scene consisting of texture mapped surfaces, this involves
not only determining where the projected points of the surfaces
should appear on the screen, but also which portions of the texture
image should be associated with the projected points.

If the image of the three-dimensional scene is to appear reatistic,
then the projection from three to two dimensions must be a perspec-
tive projection. Typically, a complex scene is converted to polygons
before projection. The projected vertices of these polygons deter-
mine boundary edges of projected polygons.

Scan conversion uses iteration to enumerate pixels on the screen
that are covered by each polygon. This iteration in the plane of
projection introduces a homogeneous variation into the parameters
that index the texture of a projected polygon. We call these param-
eters ~exture coordinates, If the homogeneous variation is ignored
in favor of a simpler linear iteration, incorrect images are produced

“201 1 N. Shoreline Blvd., Mountain View, CA 94(M3

Permission to copy withoutfee all or part of this materialis granted
providedthat the copieswe not madeor distributedfor direct
commercial advan[age. the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copyingis by
permission of the Association for Computing Machinery. To copy
utherwise. or to republish. requires a fee and/or specific permission.

u

Li&t v Wm&irrt

Figure 1. Viewing a projected texture.

that can lead to objectionable effects such as texture “swimming”
during scene animation[5]. Correct interpolation of texture coor-
dinates requires each to be divided by a common denominator for
each pixel of a projected texture mapped polygon[6].

We examine the general situation in which a texture is mapped
onto a surface via a projection, after which the surface is projected
onto a two dimensional viewing screen. ~is is like projecting
a slide of some scene onto an arbitrarily oriented surface, which
is then viewed from some viewpoint (see Figure I). It turns out
that handling this situation during texture coordinate iteration is
essentially no different from the more usual case in which a texture
is mapped linearly onto a polygon. We use projective re.rtures to
simulate spotlights and generate shadows using a method that is
well-suited to graphics hardware that performs divisions to obtain
correct texture coordinates,

2 Mathematical Preliminaries

To aid in describing the iteration process, we introduce four co-
ordinate systems. The clip coordinate system is a homogeneous
representation of three-dimensional space, with z, y, z, and UTco-
ordinates. The origin of this coordinate system is the viewpoint.
We use the term clip coordinate system because it is this system in
which clipping is often carried out. The screen coordinate system
represents the two-dimensional screen with two coordinates. These
are obtained from clip coordinates by dividing T and y by 711,so that
screen coordinates are given by z’ = xlw and y“ = ylw (the.$ su-
perscript indicates screen coordinates). The Iighf coordinate system
is a second homogeneous coordinate system with coordinates ${, y’,

Q 1992 ACM-O-8979 1-479- l/92/CF37/0249 $01.50 249

SIGGRAPH ’92 Chicaao, Julv 26-31, 1992

(x’y’z’w/k,-wf’Yt
~xl,wl +,wl)

7 L, “+
z’

LightView

(texture)

Figure 2. Object geometry in the light

(screen)

and clip coordinate systems.

.z’, and wI; the origin of this system is at the light source. Finally,
the texture coordinate system corresponds to a texture, which may
represent a slide through which the light shines. Texture coordi-
nates are given by Zt = xl/w’ and gt = g~/wl (we shall also find
a use for .zt = Zt/wi). Given (ZS, y’), a point on a scan-converted
polygon, our goal is to find its corresponding texture coordinates,
(Xt, y’).

Figure 2 shows a line segment in the clip coordinate system and its
projection onto the two-dimensional screen. This line segment rep-
resents a span between two edges of a polygon. In clip coordinates,
the endpoints of the line segment are given by

QI=(XI, YI, ZI, ~I) and Q2 = (z2, Y2,~2>w2).

A point Q along the line segment can be written in clip coordinates
as

Q=(l-t)Q, +tQ2 (1)

for some t c IO, l]. In screen coordinates, we write the comespond-
ing projected point as

Q’ = (1 – t’)Q; +tsQ; (2)

where ~ = Q1/wl arid ~ = Q2/w2.

To find the light coordinates of Q given Q’, we must find the value
oft corresponding to t’ (in general t # t’). This is accomplished
by noting that

‘1 -t)Q’ ‘tQ2 (3)
‘s = “ - “)Q’/w’ + “Q”w’ = (1 - t)w, + twz

and solving for t. This is most easily achieved by choosing a and b
such that 1 – t’ = a/(a + b) and t’ = b/(a + b); we also choose
A and B such that (1 – t)= A/(A + 1?)and t = B/(A + B).
Equation 3 becomes

Qs = aQl iw~ + bQzlwz _ AQ1 + BQ2
(a+b) - Aw, +Bw2”

(4)

It is easily verified that A = aw2 and B = bwl satisfy this equation,
allowing us to obtain tand thus Q.

Because the relationship between light coordinates and clip co-
ordinates is affine (linear plus translation), there is a homogeneous
matrix A4 that relates them:

(5)

whereQ! = (2I, YI,z;, WI) and Qj = (z!, y~,zj, w$) are the light
coordinates of the points given by Q 1and Q2 in clip coordinates.

We finally obtain

Q’ = Q1/UI’

AQ{ + BQ\—
– Aw~ + Bw:

aQ!lw + bQ~/w——
a(w~/wl) + b(w~/w’)”

(6)

Equation 6 gives the texture coordinates corresponding to a lin-
early interpolated point along a line segment in screen coordinates.
To obtain these coordhates at a pixel, we must linearly interpolate
Xi/w, y(lw, and W[lw, and divide at each pixel to obtain

(For an alternate derivation of this result, see [6].)
If WI is constant across a polygon, then Equation 7 becomes

s/w t/w

‘=~
and t=—,

1/w
(8)

where we have set s = X1I W1and t = y’ /wi. Equation 8 governs
the iteration of texture cocdnates that have simply been assigned to
polygon vertices. It still implies a division for each pixel contained
in a polygon. The more general situation of a projected texture
implied by Equation 7 requires only that the divisor be tu’/w instead
of I/w.

3 Applications

To make the various coordinates in the following examples concrete,
we introduce one more coordinate system: the world coordinate sys-
tem. This is the coordinate system in which the three-dimensional
model of the scene is described. There are thus two transformation
matrices of interest: &fc transfomm world coordinates to clip coor-
dinates, and A41transforms world coordinates to light coordinates.
Iteration proceeds across projected polygon line segments accord-
ing to equation 6 to obtain texture coordinates (d, yt) for each pixel
on the screen.

3.1 Slide Projector

One application of projective texture mapping consists of viewing
the projection of a slide or movie on an arbitrary surface[9][2]. In
this case, the texture represents the slide or movie. We describe a
multi-pass drawing algorithm to simulate film projection.

Each pass entails scan-converting every polygon in the scene.
Scan-conversion yields a series of screen points and corresponding
texture points for each polygon. Associated with each screen point is
a color and z-value, denoted c and Z, respectively. Associated with

each corresponding texture point is a color and z-value, denoted Cr

and Z,. These values are used to modify corresponding values in a
framebuffer of pixels. Each pixel, denoted p, also has an associated
color and z-value, denoted CPand ZP.

A color consists of several independent components (e.g. red,
green, and blue). Addition or multiplication of two colors indicates
addition or multiplication of each correspondhg pair of components
(each component may be taken to lie in the range [0, l]).

250

Computer Graphics, 26,2, July 1992

Assume that ZP is initialized to some large value for all p, and
that CP is initialized to some fixed ambient scene color for all p.
The slide projection algorithm consists of three passes; for each
scan-converted point in each pass, these actions are performed:

Pass 1 If z < ZP, then ZP +- z (hialien surface removal)

Pass 2 If z = ZP, then CP G CP+ c, (illumination)

Pass 3 Set en = c . CP (jnal rendering)

Pass 1 is a z-buffering step that sets ZP for each pixel. Pass 2
increases the brightness of each pixel according to the projected

spotlight shape; the test ensures that portions of the scene visible
from the eye point are brightened by the texture image only once
(occlusions are not considered). The effects of multiple film pro-
jections may be incorporated by repeating Pass 2 several times,
modifying ,i ff and the light coordinates appropriate] y on each pass.
Pass 3 draws the scene, modulating the color of each pixel by the cor-
responding color of the projected texture image. Effects of standard
(i.e. non-projective) texture mapping may be incorporated in this
pass. Current Silicon Graphics hardware is capable of performing
each pass at approximate] y 1@ polygons per second.

Figure 3 shows a slide projected onto a scene. The left image
shows the texture map; the right image shows the scene illuminated
by both ambient light and the projected slide. The projected image
may also be made to have a particular focal plane by rendering the
scene several times and using an accumulation buffer as described
in [4].

The same configuration can transform an image cast on one pro-
jection plane into a distinct projection plane. Consider, for instance,
a photograph of a building’s facade taken from some position. The
effect of viewing the facade from arbitrary positions can be achieved
by projecting the photograph back onto the building’s facade and
then viewing the scene from a different vantage point. This ef-
fect is useful in walk-throughs or fly-bys; texture mapping can be
used to simulate buildings and distant scenery viewed from any
viewpoint[I][7],

3.2 Spotlights

A similar technique can be used to simulate the effects of spotlight
illumination on a scene. In this case the texture represents an
intensity map of a cross-section of the spotlight’s beam. That is,
it is as if an opaque screen were placed in front of a spotlight and
the intensity at each point on the screen recorded. Any conceivable
spot shape may be accommodated. In addition, distortion effects,
such as those attributed to a shield or a lens, may be incorporated
into the texture map image.

Angular attenuation of illumination is incorporated into the in-
tensity texture map of the spot source. Attenuation due to distance
may be approximated by applying a function of the depth values
z’ = z’/u{ iterated along with the texture coordinates (x’, y’) at
each pixel in the image.

This method of illuminating a scene with a spotlight is useful
for many real-time simulation applications, such as aircraft landing
lights, directable aircraft taxi lights. and automotive headlights.

3.3 Fast, Accurate Shadows

Another application of this technique is to produce shadows cast
from any number of point light sources, We follow the method
described by Will iams[10]. but in a way that exploits available
texture mapping hardware.

First, an image of the scene is rendered from the viewpoint of the
light source. The putpose of this rendering is to obtain depth values
in light coordinates for the scene with hidden surfaces removed.
The depth values are the values of zl/wl at each pixel in the image.
The array of Zt values corresponding to the hidden surface-removed
image are then placed into a texture map, which will be used as a
shadow rnap[10][8]. We refer to a value in this texture map as Zr.

The generated texture map is used in a three-pass rendering pro-
cess. This process uses an additional framebuffer value OP in the
range [0, 1]. The initial conditions we the same as those for the slide
projector algorithm.

Pass 1 If z < ZP, then ZP * z, CP ~ c (hidden suface removal)

Pass 2 If z, = Zt, then&P - I; else OP -0 (shadow resting)

Pass 3 CP + CP+ (c modulated by aP) (jinal rendering)

Pass 1 produces a hidden surface-removed image of the scene using
only ambient illumination. If the two values hr tbe comparison in
Pass 2 are equal, then the point represented by p is visible from the
light and so is not in shadow; otherwise, it is in shadow. Pass 3,
drawn with full illumination, brightens portions of the scene that
are not in shadow.

In practice, the comparison in Pass 2 is replaced with z, > Zt + c,
where t is a bias. See [8] for factors governing the selection off.

This technique requires that the mechanism for setting OP be
based on the result of a comparison between a value stored in the
texture map and the iterated Zt. For accuracy, it also requires that
the texture map be capable of representing large ZT. Our latest
hardware posseses these capabilities, and can perform each of the
above passes at the rate of at least I@’ polygons per second.

Correct illumination from multiple colored lights may be pro-
duced by performing multiple passes. The shadow effect may also
be combined with the spotlight effect described above, as shown
in Figure 4. The left image in this figure is the shadow map. The
center image is the spotlight intensity map. The right image shows
the effects of incorporating both spotlight and shadow effects into a
scene.

This technique differs from the hardware implementation de-
scribed in [3]. It uses existing texture mapping hardware to create
shadows, instead of drawing extruded shadow volumes for each
polygon in the scene. In addition, percentage closer filtering [8] is
easily supported.

4 Conclusions

Projecting a texture image onto a scene from some light source is no
more expensive to compute than simple texture mapping in which
texture coordinates are assinged to polygon vertices. Both require
a single division per-pixel for each texture coordinate; accounting
for the texture projection simply modifies the divisor.

Viewing a texture projected onto a three-dimensional scene is
a useful technique for simulating a number of effects, including
projecting images, spotlight illumination, and shadows. If hardware
is available to perform texture mapping and the per-pixel division
it requires, then these effects can be obtained with no performance
penalty.

Acknowledgements

Many thanks to Derrick Bums for help with the texture coordinate
iteration equations. Thanks also to Tom Davis for useful discus-

251

SIGGRAPH ‘92 Chicago. July 26-31, 1992

Figure 3. Simulating a slide projector.

Figure 4. Generating shadows using a shadow map.

sions. Dan Baum provided helpful suggestions for the spotlight
implementation. Software Systems provided some of the textures
used in Figure 3.

References

[l] Robert N. Devich and Frederick M. Weinhaus. Image perspec-
tive transformations. SPIE, 238, 1980.

[2] Julie O’B. Dorsey, Francois X. Sillion, and Donald P. Green-
berg. Design and simulation of opera lighting and projection
effects. In Proceedings of SIGGRAPH ‘91, pages 4 l-SO, 199 1.

[3] Henry Fuchs, Jack Goldfeather, and Jeff P. Hultquist, et al.
Fast spheres, shadows, textures, transparencies, and image
enhancements in pixels-planes. In Proceedings of SlGGRAPH
‘85, pages I I l-120.1985.

[4] Paul Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In Proceedings
of SIGGRAPH ‘90, pages 309-3 18, 1990.

[5] Paul S. Heckbert. Fundamentals of texture mapping and image
warping. Master’s thesis, UC Berkeley, June 1989.

252

[6] Paul S. Heckbert and Henry P Moreton. Interpolation for
polygon texture mapping and shading. In David F. Rogers and
Rae A. Eamshaw, editors, State of the Art in Computer Graph-
ics: Visualization and Modeling, pages 101-I I 1. Springer-
Verlag, 1991.

[7] Kazufumi Kaneda, Eihachiro Nakamae, Tomoyuki Nishita,
Hideo Tanaka, and Takao Noguchi. Three dimensional ter-
rain modeling and display for environmental assessment. In
Proceedings of SIGGRAPH ‘89, pages 207-2 14, 1989.

[8] William T. Reeves, David H. Salesin, and Robert L. Cook.
Rendering antialiased shadows with depth maps. In Proceed-
ings of SIGGRAPH ‘87, pages 283-29 1, 1987.

[9] Steve Upstill. The RenderMan Companion, pages 371-374.
Addison Wesley, 1990.

[IO] Lance Williams. Casting curved shadows on curved surfaces.
In Proceedings of SIGGRAPH ‘78, pages 270-274, 1978.

