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We describe a new approach to ray tracing which 
drastically reduces the number  of ray-object and 
ray-bounds intersection calculations by means of 
5-dimensional space subdivision. Collections of rays 
originating from a common 3D rectangular volume and 
directed through a 2D solid angle are represented as 
hypercubes in 5-space. A 5D volume bounding the space 
of rays is dynamically subdivided into hypercubes, each 
linked to a set of objects which are candidates for 
intersection. Rays are classified into unique hypercubes 
and checked for intersection with the associated candidate 
object set. We compare several techniques for object 
extent testing, including boxes, spheres, plane-sets, and 
convex polyhedra. In addition, we examine optirnizations 
made possible by the directional nature of the algorithm, 
such as sorting, caching and backface culling. Results 
indicate that this algorithm significantly outperforms 
previous ray tracing techniques, especially for complex 
environments. 
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and Realism; 
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1. I n t r o d u c t i o n  

Our goal in studying algorithms which accelerate ray 
tracing is to produce high-quality images without paying 
the enormous time penalty traditionally associated with 
this method. Recent algorithms have focused on reducing 
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the number of ray-object intersection tests performed 
since this is typically where most of the time is spent, 
especially for complex environments. This is achieved by 
using a simple-to-evaluate function to cull objects which 
are clearly not in the path of the ray. 

1.1 P r e v i o u s  W o r k  

Rubin and Whitted [14] developed one of the first 
schemes for improving ray tracing performance. They 
observed that "exhaustive search" could be greatly 
improved upon by checking for intersection with simple 
bounding volumes around each object before performing 
more complicated ray-object intersection checks. By 
creating a hierarchy of bounding volumes, Rubin and 
Whirred were able to reduce the number of bounding 
volume intersection checks as well. Weghorst, et. al. [17] 
studied the use of different types of bounding volumes in 
a hierarchy, and discussed how ease of intersection 
testing and "tightness" of fit determine the bounding 
volume's  effectiveness in culling objects. 

The object hierarchy of Rubin and Whitted made the 
crucial step away from the linear time complexity of 
exhaustive search but still did not achieve acceptable 
performance on complex environments. This was due in 
part to the top down search of the object hierarchy 
required for every ray. Another factor was the difficulty 
of obtaining a small bound on the number of ray-object 
intersection tests and ray-bounds comparisons required 
per ray since this depended strongly on the organization 
of the hierarchy. 

Another class of algorithms employs 3D space 
subdivision to implement culling functions. The initial 
candidates for intersection are associated with a 3D 
volume containing the ray origin. Successive candidates 
are identified by regions which the ray intersects. 
Concurrently and independently, Glassner [4], and 
Fujimoto, et. al. [3] pursued this approach. Glassner 
investigated partitioning the object space using an octree 
data structure, while Fujimoto compared octrees to a 
rectangular linear grid of 3D voxels. Kaplan [7] proposed 
a similar scheme and observed that a binary space 
partitioning tree could be used to accomplish the space 
subdivision. A drawback common to all of these 
approaches is that a ray which misses everything must be 
checked against the contents of each of the regions or 
voxels which it intersects. 
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None of these algorithms made use of the coherence 
which exists between similar rays. Speer, et. al. [15] 
examined the concept of "tunnels" as a means of 
exploiting ray-tree coherence. Speer attempted to 
construct cylindrical "safety regions" within which a ray 
would miss all objects, but observed that despite 
considerable coherence, the cost of constructing and using 
the cylindrical tunnels negated the benefit of the culling 
they accomplished. 

Kay and Kajiya [8] introduced a new type of bounding 
volume, plane-sets, and a hierarchy traversal algorithm 
which is able to check objects for intersection in a 
particular order, regardless of the locality of the bounding 
volume hierarchy. This algorithm had the key advantage 
over previous object hierarchy schemes that objects could 
be checked for intersection in approximately the order 
that they would be encountered along the ray length. 

1 .2  A N e w  A p p r o a c h  

Our ray classification approach differs significantly 
from previous work in that it extends the idea of space 
subdivision to include ray direction. The result is an 
extremely powerful culling function that is, empirically, 
relatively insensitive to environment complexity. 

A key feature of the algorithm is that a single 
evaluation of its culling function is capable of producing a 
small but complete set of candidate objects, even if the 
ray misses everything. This is accomplished by adaptively 
subdividing the space of all relevant rays into equivalence 
classes, El ,  E2, ..., Era, and constructing candidate 
object sets C1, C2, ..., Cm, such that Ci contains all 
objects which the rays in Ei can intersect. Evaluating the 
culling function reduces to classifying a given ray as a 
member  of an equivalence class and retrieving the 
associated candidate set. The algorithm strives to keep 
J Ci I small for all i, and several new techniques are 
employed which lessen the impact of those sets for which 
it fails to do so. 

2. 5-Space and Ray Classification 

In many ray tracing implementations, rays are 
represented by a 3D origin coupled with a 3D unit 
direction vector, a convenient form for intersection 
calculations. However, geometrically a ray has only five 
degrees of freedom, as evidenced by the fact that the 
same information can be conveyed by only five values: for 
instance, a 3D origin and two spherical angles. 
Consequently, we can identify rays in 3-space with points 
in 5-space, or, more precisely, with points in the 
5-manifold R3xS2, where $2 is the unit sphere in R3. It 
follows that any neighborhood of rays, a collection of rays 
with similar origins and directions, can be parametrized 
by a subset of R5. We shall use such parametrizations in 
constructing a culling function which makes use of all five 
degrees of freedom of a ray. 

The ray classification algorithm can be broken into 
five subtasks. All but the last operate at least partly in 
5-space. These are: 

[ ]  5D Bounding Volume: 
Find a bounded subset, E c R5, which contains the 
5D equivalent of every ray which can interact with the 
environment. 

[] 

[] 

[] 

[ ]  

5D Space Subdivision: 
Select subsets El ,  ..., Emwhich partition E c R5 into 
disjoint volumes. 

Candidate Set Creation: 
Given a set of rays represented by a 5D volume Ei ,  
create a set of candidates, Ci ,  containing every object 
which is intersected by one of the rays. 

Ray Classification: 
Given a ray corresponding to a point in E, find a set, 
El ,  of a partitioning, E1 . . . .  , Em, which contains the 
point, and return the associated candidate set Ci .  

Candidate Set Processing: 
Given a ray and a set of candidate objects, Ci ,  
determine the closest ray-object intersection if one 
exists. 

For  each ray that is intersected with the environment, 
[ ]  is used to retrieve a set of candidate objects and [ ]  
does the actual ray-object intersections using this set. As 
we shall see, [ ]  is carried out only once while [ ]  and [ ]  
incrementally refine the partitioning and candidate sets in 
response to ray classification queries in [ ] .  Ideally we 
seek a partitioning in [ ]  such that corresponding 
candidate sets created in [ ]  contain fewer than some 
predetermined number of objects. These subtasks are 
described in detail in sections 3 through 7. 

2.1 Beams as 5D Hypercubes 

Because much of the algorithm involves 5D volumes 
it is important to choose volumes which have compact 
representations and permit efficient point-containment 
queries and subdivision. For these reasons we use 5D 
axis-aligned parallelepipeds, or hypercubes. These are 
stored as five ordered pairs representing intervals along 
the five mutually orthogonal coordinate axes which we 
label X, Y, Z, U, and V. 

Each hypercube, representing a collection of rays, has 
a natural 3D manifestation which we call a beam. This is 
the unbounded 3D volume formed by the union of 
semi-infinite lines, or rays in the geometrical sense, 
defined by the points of the hypercube. Beams play a 
central role in candidate set creation since they comprise 
exactly those points in 3-space which are reachable by a 
set of rays. Given the importance of this role it is 
essential that hypercubes define beam volumes which are 
easily represented, such as convex polyhedra. This 
geometry is completely determined by the way we identify 
rays with 5D points. 

2.2 Rays as 5D Points 

In this section we describe the means of associating a 
unique point in R5 with each distinct ray in R3. As 
mentioned earlier, a ray can be mapped to a unique 
5-tuple, (x,y,z,u,v), consisting of its origin followed by 
two spherical angles. Unfortunately the beams associated 
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with hypercubes under this mapping are not generally 
polyhedra. To remedy this, we piece together several 
mappings which have the desired properties locally, and 
together account for the whole space of rays. 

Consider the intersection of a ray with an 
axis-aligned cube of side two centered at its origin. Each 
distinct ray direction corresponds to a unique intersection 
point on this cube. A 2D coordinate system can be 
imposed on these points by normalizing the ray direction 
vector, d, with respect to the ¢o-norm, as shown in 
Equation 1, and extracting (u,v) from the result, as shown 

in Equation 2. 

d ( dx, dy, d z ) 
w - - [ 1 1  

Ildlloo MAX(Idxl, Idyl, Idzl ) 

I 
( w y ,  w z )  i f w  x =  ± 1 ,  o r  e lse  

( u , v )  = (Wx,  W z ) i f w y =  :t:1, o r  e lse  [2] 

( W , W y )  i f W z =  ::t:1 

This establishes a one-to-one correspondence between 
[ -1 ,1Ix[ -1 ,1]  and rays passing through a single face of 
the cube. By partitioning the rays into six dominant 
directions defined by the faces of the cube, and restricting 
the mapping to each of these domains, we obtain six 
bicontinuous one-to-one mappings. We associate each 
with a dominant axis, denoted +X, -X,  +Y, -Y, +Z, or -Z .  
The inverse mappings, or parametrizations, define an 
atlas of $2, covering the set of ray directions with images 
of [ -1 ,1]x[ -1 ,1] .  This is trivially extended to R3xS2. In 
order to meet our requirement of a global one-to-one 
correspondence, however, we index into six "copies" of 
[ -1 ,1]x[-1 ,1]  using the dominant axis of a ray. For  a 
given ray, this axis is determined by the axis and sign of 
its largest absolute direction component. 

Intervals in U and V together define pyramidal solid 
angles through a single cube face while intervals in X, Y, 
and Z define rectangular 3D volumes. Hypercubes then 
define beams which are unbounded polyhedra with at 
most nine faces. This is shown in Figure l b  along with a 
2D analogy as an aid to visualization in Figure la .  

3. T h e  5D B o u n d i n g  V o l u m e  

The first step of the ray classification algorithm is to 
find a bounded subset of R5 containing all rays which are 
relevant to the environment. We start by finding a 3D 
bounding box, B, which contains all the objects of the 
environment. Such a box is easily obtained from 
individual object extents. The desired bounding volume 
can then be built from six copies of the hypercube 
Bx[ -1 ,1 ]× [ -1 ,1 ] ,  each corresponding to a unique 
dominant axis and accounting for directions covering one 
sixth of the unit sphere, S2. 

The 3D bounding box, B, also serves another 
purpose. If the eye point is outside of B, then every 
first-generation ray must be checked for intersection with 
it. If there is no intersection, we know the ray hits 
nothing in the environment. Otherwise, the ray must be 

moved into the 5D bounding volume by resetting its origin 
to the point of intersection. 

Other bounding volumes can be used in place of B for 
this second purpose. For instance, plane-sets [8] can 
produce a much tighter bound, thereby identifying more 
rays which miss all the objects in the environment. 
Another advantage lies in ray re-origining. By pushing 
the rays up to the boundary of the tighter volume, we 
reduce the space of rays, making the space subdivision 
task more efficient. 

U interval 

XY intervals 

XYU intervals 

UV intervals 

XYZ intervals 

x Y z u v  intervals 

Figure la .  
Beams in 2-Space. 

Figure lb .  
Beams in 3-Space. 

4. 5D Space Subdivision 

When intersecting a ray with the environment we 
need only consider the set of objects whose bounding 
volumes are intersected. The purpose of tasks [ ]  through 
[ ]  in section 2 is to produce a set of objects containing 
these, and few others, for any ray in the environment. 
This is done efficiently by exploiting scene coherence, 
which ensures that similar rays are likely to intersect 
similar sets of objects. Due to the continuity of our ray 
parametrizations, this implies that decreasing the 
diameter of a hypercube increases the likelihood that the 
rays of its beam behave similarly. The role of 5D space 
subdivision is to produce hypercubes which are 
sufficiently small that the rays of each corresponding 
beam intersect approximately the same objects. This 
allows us to share one set of candidate objects among all 
the rays of a beam. 

We use binary space subdivision to create a 
hypercube hierarchy, dividing intervals exactly in half at 
each level, and repeatedly cycling through the five axes. 
Any ray can be contained in a hypercube of arbitrarily 
small diameter by this mechanism. Given that we use 
only a sparse subset of the potential rays, however, it is 
unnecessary to finely subdivide the entire 5D bounding 
volume. Instead, we confine subdivision to occur in those 
regions populated with rays generated during ray tracing. 
We subdivide only on demand, when the 5D coordinates 
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of a ray are found to reside in a hypercube which is too 
large. Thus, beginning with the six bounding hypercubes, 
we construct the entire hierarchy by lazy evaluation. 

When a ray causes new paths to be formed in the 
hypercube hierarchy, two heuristics determine when 
subdivision terminates. We stop if either the candidate 
set or the hypercube falls below a fixed size threshold. A 
small candidate set indicates that we have achieved the 
goal of making the associated rays inexpensive to 
intersect with the environment. The hypercube size 
constraint is imposed to allow the cost of creating a 
candidate set to be amortized over many rays. 

5. Candidate  Set Creation 

Given a hypercube, the task of creating its candidate 
set consists of determining all the objects in the 
environment which its rays can intersect. This is done by 
comparing each object 's bounding volume with the beam 
defined by the hypercube. If the volumes intersect, the 
object is classified as a candidate with respect to that 
hypercube and is added to the candidate set. 

The six bounding hypercubes are assigned candidate 
sets containing all objects in the environment. As 
subdivision proceeds, candidate sets are efficiently 
created for the new hypercubes by making use of the 
hierarchy. Only those objects in an ancestor 's candidate 
set need be reclassified. 

For  space efficiency, we need not create a candidate 
set for every intermediate hypercube in the hierarchy. 
When a hypercube is subdivided along one axis, the 
beams of the resulting hypercubes usually overlap 
substantially, and are quite similar to the parent beam. 
Consequently, a single subdivision eliminates few 
candidates. This suggests performing several subdivisions 
before creating a new candidate set. A strategy which we 
have found to be effective is to subdivide each of the five 
axes before creating a new candidate set. While this 
allows up to 2 s hypercubes to derive their candidate sets 
from the same ancestor, the reduction in storage is 
significant. Also, due to lazy evaluation of the hierarchy, 
it is rare that all descendants are even created. 

5.1 Object Class i f icat ion 

The object classification method used in candidate set 
creation is critical to the performance of the ray tracer. A 
very fast method may be too conservative, creating 
candidate sets which are much too large. This causes 
unnecessary overhead in both candidate set creation and 
processing. A classifying method which performs well in 
rejecting objects may be unacceptable if it is too costly. 
As with object extents used for avoiding unnecessary 
ray-object intersection checks, there must be a 
compromise between the cost of the method and its 
accuracy [17]. In the following subsections we discuss 
the tradeoffs of three object classification techniques 
which can be used independently or in combination. 

5.1.1 Classifying Objects with  LP 

The first object classification method we describe 
employs linear programming to test for object-beam 
intersection, and requires objects to be enclosed by 
convex polyhedra. A polyhedral bounding volume is 
conveniently represented by its vertex list, or hull points, 
and can be made arbitrarily close to the convex hull of 
the object. Since the beam is itself a polyhedron, the 
object classification problem reduces to test ing for 
intersection between two polyhedra. This is easily 
expressed as a linear program using the hull points [12] 
and then solved using the simplex method [13]. The 
result is an exact classification scheme for this type of 
bounding volume. That is, an object is classified as a 
candidate of a hypercube if and only if some ray of the 
beam intersects its bounding polyhedron. 

Unfortunately, our experience has shown that the 
computation required to solve the linear program is 
prohibitively high, precluding its use as the primary object 
classification method. It is overly complex for handling 
the very frequent cases of objects which are either far 
from the beam or inside it. Nevertheless, it is a useful 
tool for testing and evaluating the effectiveness of 
approximate object-classification methods. 

5.1.2 Classifying Objects with  Planes  

The linear programming approach rejects an object 
from the candidate set if and only if there exists a 
separating plane between the beam and the object 's 
bounding polyhedron. This suggests a simpler approach 
which tests several planes directly, classifying an object as 
a candidate if none of the planes are separators. 

For  every beam there are several planes which are 
particularly appropriate to test, each with the entire beam 
in its positive half-space. Four of these planes are 
parallel to the faces of the UV pyramid, translated to the 
appropriate XYZ extrema of the hypercube. Up to three 
more are found "behind" the beam, containing faces of 
the XYZ hypercube extent. If all of the vertices of an 
object 's bounding polyhedron are found to be in the 
negative half-space of one of these planes, the object is 
rejected. The half-space tests are greatly simplified by 
the nature of these planes, since all are parallel to at least 
one coordinate axis. 

This method is fast and conservative, never rejecting 
an object which is actually intersected by the beam. It is 

also approximate,  since objects will be erroneously 
classified as candidates when, for example, their 
bounding polyhedra intersect both a U and a V plane 
without intersecting the beam. 

5.1.3 Classifying Objects wi th  Cones  

Another approach to object classification uses spheres 
to bound objects and cones to approximate beams. This 
is similar to previous uses of cones in ray tracing. 
Amanatides [1] described the use of cones as a method of 
area sampling, providing accurate and inexpensive 
anti-aliasing. Kirk [9] used cones as a tool to calculate 
proper texture filtering apertures, and to improve 
anti-aliasing of bump-mapped surfaces. In our context, 
cones prove to be very effective for classifying objects 
bounded by spherical extents. 
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TO create a candidate set for a hypercube we begin by 
constructing a cone, specified by a unit axis vector, W, a 
spread angle, 0, and an apex, P, which completely 
contains the beam of the hypercube. If this cone does not 
intersect the spherical extent of an object, the object is 
omitted from the candidate set. The details of the 
cone-sphere intersection calculation are given in both [1] 
and [9]. We describe the construction of the cone below 
with the aid of function F in Equation 3, which defines 
inverse mappings of those described in section 2.2. 

F ( u ,  V) = 

( 1, u, v )  if +Xis  dominant 

( - 1 ,  u, v )  if - X i s  dominant 

( u, 1, v )  if +Y is dominant 

( u , - 1 ,  v )  if - Y i s  dominant 

( u, v, 1 )  if +Z is dominant 

( u, v , - 1 )  if - Z i s  dominant 

131 

The cone axis vector, W, depends only on the 
dominant axis of the hypercube and its U and V intervals, 
(umin,umax) and (vmin, vmax). It is constructed by 
bisecting the angle between the vectors A and B, which 
are given by Equations 4 and 5. 

A -- F( umin, vmax ) [4] 

B = F( umax, vmin ) [5] 
To find the cone spread angle we also construct 

vectors C and D using Equations 6 and 7. We then 
compute 0 as shown in Equation 8. 

C = F( umin, vmin ) [6] 

D -- F( umax, vmax ) [7] 

0 = ~¢[AX( A/W,  B/W, CgW, D / W  ) [8] 

Once the axis and spread angle are known, the apex 
of the cone, P, is determined by the 3D rectangular 
volume, R, defined by the XYZ intervals of the 
hypercube. The point P is located by displacing the 
centroid of R in the negative cone axis direction until the 
cone exactly contains the smallest sphere bounding R. 
The resulting expression for P is given in Equation 9, 
where R0 and R1 are the min and max extrema of R. 

1% + R1 II R 0 -  R1 IIz P - W [9] 
2 2 SINe 

The cone is used to classify all potential candidates 
of the hypercube and is constructed only once per 
hypercube. The comparison between the cone and the 
object's bounding sphere is fast, making the cost of a 
distant miss low. This reduces the penalty of infrequent 
candidate list creation, the space saving measure 
discussed in section 5. 

A linear transformation, M, applied to an object can 
also be used to modify its bounding sphere. By 

transforming the center of the sphere by M and scaling its 
radius by II M 112, we obtain a new sphere which is 
guaranteed to contain the transformed object. The matrix 
2-norm is given by x/( P( M 7M ) ) [11], where 0, the 
spectral radius, is the largest absolute eigenvalue of a 
matrix. If MTM is sparse, the eigenvalue calculation is 
quite simple. An iterative technique like the power 
method can be used for the remaining cases [5]. 

6. Ray Class i f icat ion 

Every ray-environment intersection calculation begins 
with ray classification, which locates the hypercube 
containing the 5D equivalent of the ray. This entails 
mapping the ray into a 5D point and traversing the 
hypercube hierarchy, beginning with the bounding 
hypereube indexed by the dominant axis of the ray, until 
we reach the leaf containing this point. Due to lazy 
evaluation of the hierarchy, this traversal may have the 
side effect of creating a new path terminating at a 
sufficiently small hypercube containing the ray if such a 
path has not already been built on behalf of another ray. 
If the candidate set associated with the leaf hypercube is 
empty, we are guaranteed that the ray intersects nothing. 
Otherwise, we process this set as described in the next 
section. 

7. Candidate  Set Processing 

Once ray classification has produced a set of 
candidate objects for a given ray, this set must be 
processed to determine the object which results in the 
closest intersection, if one exists. To optimize this search 
we continue to make use of object bounding volumes for 
coarse intersection checks. We also reject objects whose 
bounding volumes intersect the ray beyond a known 
object intersection. This can further reduce the number 
of ray-object intersection calculations, but still requires 
that the ray be tested against all bounding volumes of the 
candidate set. 

We can remove this latter requirement by taking 
advantage of the fact that all rays of a given beam share 
the same dominant axis. By sorting the objects of the 
candidate sets by their minimum extents along this axis, 
then processing them in ascending order, we can ignore 
the tail of the list if we reach a candidate whose entire 
extent lies beyond a known intersection. This is an 
enormous advantage because it can drastically reduce the 
number of bounding volume checks in cases where the 
ray intersects an object near the head of the list. For 
example, in Figure 2 only the first two objects are tested 
because all subsequent objects are guaranteed to lie 
beyond the known intersection. By sorting the candidate 
sets of the six bounding hypercubes along the associated 
dominant axes before 5D space subdivision begins, the 
correct ordering can be inherited by all subsequent 
candidate sets with no additional overhead. Object 
bounding boxes provide the six keys used in sorting these 
initial candidate sets. 
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Figure 2. 
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Sorted candidates. 

8. B a c k f a c e  C u l l i n g  

Though backface culling is a popular technique in the 
field of computer graphics [10], it has previously been of 
very limited use in ray tracing since polygons which are 
not in the direct line of sight can still affect the 
environment by means of shadows, reflections, and 
transparency. When creating the candidate set of a 
hypercube, however, it is appropriate to eliminate those 
polygons which are part of an opaque solid and are 
backfacing with respect to every ray of its beam. When 
classifying with cones, this latter criterion is met if 
Equation 10 is satisfied, where N is the front-facing 
normal of the polygon, W is the cone axis, and 0 is the 
cone spread angle. 

N . w  > SIN 0 [10] 

Using this technique, rays headed in opposite 
directions through the same volume of space may be 
tested against totally disjoint sets of polygons. By 
eliminating nearly half the candidates of most 
hypercubes, backface culling greatly accelerates both the 
creation and processing of candidate sets. 

9. I m a g e  C o h e r e n c e  a n d  C a c h i n g  

Due to image coherence, two neighboring samples in 
image space will tend to produce very similar ray trees. 
This implies that successive rays of a given generation 
will tend to be elements of the same beam. We use this 
fact to great advantage by caching the most recently 
referenced hypercubes of each generation and checking 
new rays first against this cache. If a ray is contained, it 
is a cache hit, and the previous candidate set is returned 
immediately, without re-traversing the hypercube 
hierarchy. Otherwise, we classify the ray by traversal and 
update the cache with the new hypercube and candidate 
set. Although hierarchy traversal is very efficient, 
verifying that a point lies within a hypercube requires only 
ten comparisons, a considerable shortcut. 

A related caching technique is used exclusively for 
shadows. Rays used for sampling light sources are 
special because there is no need to compute the closest 
intersection. It suffices to determine the existence of an 
opaque object between the ray origin and the intersection 
with the light source. If a given point in 3-space is in 
shadow, nearby points are likely shadowed by the same 
object. The shadow cache simply records the last object 
casting a shadow with respect to each light source and 
checks that object first, as part of the next shadow 
calculation. 

10. C a n d i d a t e  Set T r u n c a t i o n  

Because we cannot decide when one object occludes 
another based on bounding volumes alone, a candidate 
set must contain all objects whose bounding volumes 
intersect the beam. Thus, even extremely narrow beams 
can produce candidate sets which are large. This poses 
no problem for candidate set processing because sorting 
insures that far-away occluded objects will never be 
tested. This does increase storage requirements, 
however, by increasing the number of candidate sets 
which contain a given object. 

We can drop far-away objects from a candidate set at 
the expense of a slight penalty incurred by rays which are 
not blocked by the nearer objects. This is done by 
truncating a sorted candidate set at a point where the 
remaining objects are outside the XYZ extent of the 
hypercube and marking this point with a truncation plane 
orthogonal to the dominant axis. For example, in Figure 
2 this could occur just before the fourth object. We 
process a truncated candidate set differently only when no 
object intersection is found in front of the truncation 
plane. See Figure 3. In this case we re-position the ray to 
the truncation plane, re-classify, and process the new 
candidate set. Though this is similar to previous 3D 
space subdivision techniques [3][4][7], we retain the 
distinct advantages of sorting and backface culling within 
the truncated candidate sets, as well as the ability to pass 
rays through unobstructed regions of space with virtually 
no work. 

We reduce the cost of occasional re-classification 
steps by adding a cache dimension indicating the number 
of times a ray has been reclassified. This allows most 
re-classifications to be done without traversing the 
hypercube hierarchy. Moreover, re-reclassifying a ray 
often results in a net gain by narrowing the included 
volume as we proceed further away from the original ray 
origin. See Figure 4. 

Figure 3. 
Set truncation. 

Figure 4. 
Beam narrowing. 

11. F i r s t - G e n e r a t i o n  Rays 

First-generation rays have only two degrees of 
freedom, making them easy to characterize, and 
frequently outnumber all other rays, making them 
important to optimize. Many ray tracing implementations 
obviate the need for first-generation rays altogether by 
means of more conventional scan-line or depth-buffer 
algorithms. For extremely complex environments, 
however, the value of these methods diminishes, since 
they are forced to expend some effort on every object, 
even those which do not contribute to the final image. It 
is therefore worthwhile to examine ray tracing techniques 
which can perform superlinearly on these rays. 
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The ray classification algorithm benefits in a number 
of ways from the special nature of first-generation rays. 
Because they originate from a degenerate 3D volume, the 
eye point, first-generation rays can be classified using u 
and v alone. This increases the efficiency of ray 
classification by simplifying the traversal of the hypercube 
hierarchy, which becomes a hierarchy of 2D rectangles. 
Candidate set creation also benefits because the beams 
associated with the degenerate hypercubes are non- 
overlapping pyramids. Candidate sets are therefore cut in 
half, on average, with every subdivision. This makes it 
feasible to obtain smaller candidate sets, thereby speeding 
up candidate set processing as well. The result of these 
optimizations for first-generation rays is an image-space 
algorithm which closely resembles the 2D recursive 
subdivision approach introduced by Warnock [16]. 

12. S u m m a r y  

We have described a method which accelerates ray 
tracing by drastically reducing the number of ray-object 
and ray-bounds intersection checks. This is accomplished 
by extending the notion of space subdivision to a 5D 
scheme which makes use of ray direction as well as ray 
origin. Rays are classified into 5D hypercubes in order to 
retrieve pre-sorted sets of candidate objects which are 
efficiently tested for intersection with each ray. The 
computational cost of intersecting a ray with the 
environment is very low because similar rays share the 
benefit of culling far-away objects, thereby exploiting 
coherence. This technique can be used to accelerate all 
applications which rely upon ray-environment inter- 
sections, including those which perform Monte Carlo 
integration [2][6]. Empirical evidence indicates that 
performance is closer to constant time than previous 
methods, especially for very complex environments. 

13. R e s u l t s  

All test images were calculated at 512 by 512 pixel 
resolution with one sample per pixel for timing purposes. 
All of the images in the figures were calculated at 512 by 
512 pixel resolution and anti-aliased using adaptive 
stochastic sampling with 5x5 subpixels and a cosine- 
squared filter kernel. Figures 5a and b are false color 
images of the recursive pyramid with four levels of 
recursion, from [8]. The hue of the false color indicates 
the number of ray-bounds checks which were performed 
in the course of computing each pixel. The scale 
proceeds from blue for 0 bounding volume checks to red 
for 50 or more. Figure 5a depicts the performance of the 
ray classification algorithm without the first-generation 
ray optimization, and Figure 5b shows how performance 
improves when this optimization is enabled. 

The same basic model is instanced to ten levels of 
recursion in Figure 5c. This environment contains over 
four million triangles and was ray traced in 1 hour and 28 
minutes (see table in Figure 6). 

Figure 7 is a reflective teapot on a checkerboard, and 
Figure 8 shows the original five Platonic Solids and the 
newly discovered Teapotahedron. 

Figure 9a shows the Caltech tree with leaves as they 
might appear rather late in the year. Figure 9b is a false 
color rendering with the same scale as described above. 
The fine yellow and red lines at the edge of the dark blue 
shadows in the false color image indicate shadow 
calculations which required processing a candidate set. 
The interior areas of the shadows are dark blue, 
indicating very few bounding volume checks, due to the 
shadow cache optimization. 

The same tree is shown in Figure 10 rendered in false 
color without leaves. Even though there are fewer 
primitives, the number of ray-bounds checks is not much 
different from that of the tree with leaves. This is due to 
the difficulty of accurately classifying long arbitrarily 
oriented cylinders. 

Figure 11a is a true color image of a grove of 64 
instanced trees with leaves. This environment contains 
477,121 objects and was ray traced in 4 hours and 53 
minutes. Figure 11b is a false color rendering of the 
grove of trees. 

We wish to compare the performance of our 
algorithm with that of previous methods. Due to the 
generosity of Tim Kay at Caltech, we were able to run 
benchmarks using the same databases used in [8]. Since 
we did not have access to a Vax 11/780 for our 
benchmarks, we chose an Apollo DN570, which has 
roughly the same level of performance. Kay and Kajiya 
compared the performance of their program on the 
recursive pyramid of Figure 9 with the performance 
reported by Glassner [4]. Glassner's program took 
approximately 8700 Vax 11/780 seconds to render the 
scene, while Kay's program took approximately 2706 
seconds, which translates roughly to a factor of 2.6 
improvement after accounting for differences in the 
scene. Our program took approximately 639 seconds on 
an Apollo DN570, representing a further factor of 4.2 
improvement. 

A c k n o w l e d g e m e n t s  

We would like to thank Rick Speer, both for 
organizing an informal ray tracing discussion group at the 
86 SIGGRAPH conference, and for directing' the 
discussion toward coherence and directional data 
structures. Pat Hanrahan deserves credit for supplying 
the insight that directional classification of rays need not 
be tied to objects. Thanks to Christian Bremser, John 
Francis, Olin Lathrop, Jim Michener, Semyon Nisenzon, 
Cary Scofield, and Douglas Voorhies for their diligent 
critical reading of early drafts of the paper. Special 
thanks to Olin Lathrop and John Francis for help in 
defining and implementing the "ray tracing kernel", the 
testbed used for this work, and to Jim Michener for his 
many helpful technical comments. Resounding applause 
to Tim Kay for making his pyramid and tree databases 
available. Last but by no means least, thanks to Apollo 
Computer and particularly to Christian Bremser and 
Douglas Voorhies for making time available to perform 
this work. 

61 



~ SIGGRAPH '87, Anaheim, July 27-31, 1987 

References 

[1] Amanatides, John., "Ray Tracing with Cones," 
Computer Graphics, 18(3), July 1984, pp. 129-135. 

[2] Cook, Robert L., Thomas Porter, and Loren 
Carpenter., "Distributed Ray Tracing," Computer 
Graphics 18(3), July 1984, pp. 137-145. 

[3] Fujimoto, Akira,, and Kansei Iwata., "Accelerated 
Ray Tracing," Proceedings of Computer Graphics 
Tokyo '85, April 1985. 

[4] Glassner, Andrew S., "Space Subdivision for Fast 
Ray Tracing," IEEE Computer Graphics and 
Applications, 4(10), October, 1984, pp. 15-22. 

[5] Johnson, Lee W., and Riess, Dean R., "Numerical 
Analysis," Addison-Wesley, 1977. 

[6] Kajiya, James T., "The Rendering Equation," 
Computer Graphics 20(4), August 1986, pp. 
143-150. 

[7] Kaplan, Michael R., "Space Tracing: A Constant 
Time Ray Tracer," ACM SIGGRAPH '85 Course 
Notes 11, July 22-26, 1985. 

[8] Kay, Timothy L. and James Kajiya., "Ray Tracing 
Complex Scenes," Computer Graphics, 20(4), 
August 1986, pp. 269-278. 

[9] Kirk, David B., "The Simulation of Natural Features 
using Cone Tracing," Advanced Computer Graphics 
(Proceedings of Computer Graphics Tokyo '86), 
April 1986, pp. 129-144. 

[10] Newman, William M., and Robert F. Sproull., 
"Principles of Interactive Computer Graphics," 1st 
edition, McGraw-Hill, New York, 1973. 

[11] Ortega, James M., "Numerical Analysis, A Second 
Course," Academic Press, New York, 1972. 

[12] Preparata, Franco P., and Michael I. Shamos., 
"Computational Geometry, an Introduction," 
Springer-Verlag, New York, 1985. 

[13] Press, William H., Brian P..Flannery, Saul A. 
Teukolsky, William T. Vetterling., "Numerical 
Recipes," Cambridge University Press, Cambridge, 
1986. 

[14] Rubin, Steve, and Turner Whitted., "A 
Three-Dimensional Representation for Fast 
Rendering of Complex Scenes," Computer Graphics 
14(3), July 1980, pp. 110-116. 

[15] Speer, L. Richard, Tony D. DeRose, and Brian A. 
Barsky., "A Theoretical and Empirical Analysis of 
Coherent Ray Tracing," Computer-Generated 
Images (Proceedings of Graphics Interface '85), May 
27-31, 1985, pp. 11-25. 

[16] Warnock, John E., "A Hidden-Surface Algorithm for 
Computer Generated Half-tone Pictures,", Ph.D. 
Dissertation, University of Utah, TR 4-15, 1969. 

[17] Weghorst, Hank, Gary Hooper, and Donald 
Greenberg., "Improved Computational Methods for 
Ray Tracing," ACM Transactions on Graphics, 3(1), 
January 1984, po. 52-69. 

62 



( ~  ~ Computer Graphics, Volume 21, Number 4, July 1987 

Figure  6: R u n - t i m e  Statist ics  

All pixel, ray, and classify counts are in thousands  

Pyramid Pyramid Tree Tree Grove Teapot Platonic 
* '4  ** I0 Branches Leaves 64 Trees Solids 

Objects 1024 4.2E6 1272 7455 477,121 1824 1405 

Pixels 262 262 262 262 262 262 262 

Shading Rays 262 262 262 262 262 262 262 

37 28 133 150 128 187 224 Shadow Rays 

Total Rays 299 290 395 412 390 534 515 

Rays that hit 43 30 149 191 213 206 240 

Beam/Object Classifies 10.50 117.06 16.01 17.02 46.46 47.71 10.41 

Object Intersections 188 288 989 716 1884 523 4896 

CPU Time, DN570 sec. 639 5335 2194 3230 17607 3100 2474 

(sec/ray) 0.002 0.018 0.006 0.008 0.045 0.006 0.008 

(sec/ray that hit) 0.015 0.178 0.015 0.017 0.083 0.015 0.010 

Figure 7. Reflective Teapot 

!i! I~ 

Figure 8. Platonic Solids 
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F igure  9a. Au tumn Tree Figure  9b. Fa l se  Color  Tree with Leaves  

Figure  10. Leaf less  Tree 

F igure  11a. Grove  o f  Trees  Figure  l i b .  Fa lse  Color  Grove of  Trees 
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