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Abstract

Marny of the current radiosity algorithms create a piecewise con-
stant approximation to the actual radiosity. Through interpolation
and extrapolation, a continuous solution is obtained. An accurate

solution is found by increasing the number of patches which describe
the scene. This has the effect of increasing the computation time as

well as the memory requirements. By using techniques found in the
finite element method, we can incorporate an interpolation function
directly into our form factor computation. We can then use less ele-
ments to achie a more accurate solutiowd algorithms, devied
from the finite element method, are described and analyzed.

CR Categories and Subject Descriptorsl.3.3 [Computer Graph-
ics]: Picture/lImage Generation - Display Algorithms. 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases finite elements, form-factor,

global illumination, radiosity.
1 Introduction

The traditional radiosity algorithm computes the form factors at
a collection of points [5]. There e been seeral techniques used

global node becomes a combination of basis functions defined on the
local nodes of all elements which contain the global node [2], [9],
[14]. In this paper a node is “contained” or “in” an element if it is

on the boundary or interior of the element. Using the basis function
f, and radiosityd; associated with each nbde , we can approximate
the radiosity at a point  in our environment as a linear combination
of the radiosities of each node or

B(x) = S B, £

i=1

(EQD)

2.2

Due to its compatibility with triangulation and orientation inde-
pendence using Gouraud shading, we have chosen the triangle as our
element. We also need to concern ourselves with the connectivity of
this element. Our solutign will be much more accurate if we align
ourmeshtoth®® and' discontinuities as described by [9] and
[10]. We can obtain elements wi continuity by using the same
nodes on the boundary of adjacent elements [2], [4]. By definition,
theC® elements can accurately mobél  discontinuitie®®A  dis-
continuity would result from surface intersection, discrete changes
in emissivity or discrete changes in reflectivity. These can be mod-

Element Construction

to enhance and speed up the algorithm. Cohen described an algorithrgled by aligning our edges to the discontinuities and duplicating the
which enabled more complex environments to be rendered by plac10des along the edge [9]. Higher order discontinuities could be mod-
ing a half cube or “hemicube” at each evaluation point and sampling eled by selectively enforcing higher derivative continuity across the
through pixels on the hemicube surface [3]. We can improve the accu£0mmon edges between adjacent elements, but this is quite complex
racy of the solution by increasing the resolution of the hemicube or [12] S0 we approximate them by using smaller elements.

by analytically determining the form factors [1], [13]. Further 3 Finite Element Methods

improvements can be made by producing a mesh which follows the

discontinuities introduced by shadow boundaries and surface inter- T his section will give a very brief introduction to finite element
sections [9], [10]. mathematics to provide us with modifications needed for the radi-

Rather than assuming the radiosity arrives from piecewise con- osity algorithm to incorporate higher order elements and the previ-

stant patches, Max and Allison introduced an algorithm which ~ ©usly discussed basis functions.
assumed a piecewise linear approximation [11]. This algorithm 3.1
works by placing an interpolation function directly into the form fac- ) . ) ) )
tor computation. Using this technique, a more accurate solution can e Start by reiterating an equation from [8] which describes the
be obtained with less patches [9]. An extension to this algorithm is fadiosity for all points in the environment

to increase the order of the interpolation function to quadratic, cubic

Residual Error

or even higher [16]. These interpolation functions are what the finite B(Y =E(+ p(X)![dSK (x9B(9 (EQ2)
element method refers to as basis functions [2].
. . where
2 Basis Functions
. . . €0sB. cosb,

The details of the basis functions, elements and nodes can be found K(X9 = V(X9 ! ) (EQ 3)
in [2]. We will only give a brief @erview to establish our terminol- r?
gy Exact solutions to (EQ 2) are known only in the simplest of geom-
2.1 Approximation Function etries [8]. The xact solution can be approximated using the linear

- . . . binationin (EQ 1). Traditional radiosit thod be thought
The finite element method associates a basis function for each Ofcom ination in (EQ 1). Traditional radiosity methods can be thoug

he local nodes i Y The basis f ion f of as having a constant basis functiof;¢k) = 1 for all points
the local nodes in a representatelement. The basis functionfora jnqige patch. Theseconstant basisadiosity algorithms will not be

reiterated. The method introduced in [11] uses linear basis functions
centered on the vertices. We will be presenting algorithms for extend-
ing polynomial basisadiosity to higher order polynomials.

The traditional radiosity method assigns an emissivity and reflec-
tivity to each patch. We can enhance our radiosity algorithms by
claiming that the exact emissivity and reflectivity are also defined by
an approximation function similar to (EQ 1). This would allow us
to describe variations in emissivity and reflectivity up to the degree
of the basis function. For the sake of brevity, we will assume that the
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emissvity e, and reflectiity p, are constant across each indial
surfacek .

We can replac®(s) in (EQ 2) by our approximation function to
obtain an approximate solution f8(x) . If our approximation is
good, then the approximate solution B{x) and the alue obtained
by applying (EQ 2) at point  should be close. If our approximate
solution is &act, the diference between thesedwpproximations
will be zero. This gies us a measure of the accyratour approx-
imation and is defined as thesidual eror. More specificallyit is
expressed as

r(x) = E(¥ +p(x)![dSK(x. 9B(9)-B(X)  (EQ4)

3.2  Method of Weighted Residuals
A general approximation technique is the method of weighted

residuals. This technique requires the residual error to be orthogona

toaset{w;(X)} of weighting functionswer the domaiQ. It was
shavn in [8] that the resulting equations could Rpressed in matrix
form as

[M-K]B =E (EQS)

whereB is a column gctor containing the cdiéients to our approx-
imation and

Mij = g{dx W (X) fj (x)

K = pk£dx W (X)![dSK(X, 9f;(s) (EQ6)

E = ekg[dx W (X)

wherek is the index of the surface supporting weight funation

4  Higher Order Algorithms

We have presented a set of interpolation functions in section 2 and
combined them with our radiosity impel using the finite element
method in section 3. Thigge us a matrix equation where each com-
ponent of the matrix contained a weighting function. By replacing
the weights with dferent functions we obtain the point collocation
and Galerkin methods [8].

4.1

The traditional gathering algorithm as well as the linear vertex
radiosity method introduced in [11] are examples of the point col-
location method. This method replaces the weighting function in (EQ
6) with the dirac delta [8]. This simplifies thé in (EQ 5) to be the
identity matrix andE to be a column vector containing the emis-
sivities at each node. The elementof  have the value

K = pkg[dSK (%, 9) T; (9)

Point Collocation Method

(EQT)

The contents of the integral describes a differential area to
weighted area formettor where the area is defined by the domain
of the basis associated with ngde . We will call this a differential
area to basis form factor. This integral can be solved using the
approach specified in [11]. The pseudocode is as follows

Initialize  to OF

For each pixel  in Hemicube

k =index of patch at h

Q = point on surface of k

For each node in jpatch k
Fij= Fi fj(Q)Ah

EndFor

EndFor
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4.2  Galerkin Method

The Galerkin method replaces the weighting functions with the
basis functions ging us the follwing definitions for the matrices
of (EQ 5).

M; = ![dx £ 091, (%)

K;j = ka;dx fi(x)![dSK(x, 91 (9) (EQ8)

E = ekJ;dx f.(x)

We'll start by looking at the equation f&f;; . We only need to
concern oursebs with the area wheffe andf, are both non-zero.
This will only occur if an element can be found which has the nodes
‘ andj on the boundary or interior. Clearly this occurisafjualg.

We can easily computd;; by considering only the elements which
contain node and looking through that small set of elements for the
elements which also contain nodéMe then intgrate across these
elements individually and sum the results. The formula for 2-D
change of ariables from the global triangle to the represergatie-
ment gves us the Jacobian determinant which is the area of the global
element. Therefore, the il across an element is the same as the
integral across the representatielement multiplied by the area of
the element. The final result is a constant multiplied by the area of
the global element. The constant is dependent upon theeqiati-
tions of the local nodes corresponding timdj . We can store these
constants in a matribd .. This matrix is symmetrical, which is what
we would expect by looking at the equation. The local node numbers
fori andj correspond to the woand column of a location this matrix.

Solving forE; follovs a similar path. In this case, we must inte-

_ grate across the domain of the basis functioa.céh form aector

E. which contains the integral of all of the local nodes across the
representative element. To compée , we look at each element
which has node i, use the local node number as an indekinto
multiply that array element by the area and then add it to the current
value ofE;. After we visit each element, we multiply our result by
the node emissios,

ComputingK;; is slightly more imolved. We knav from (EQ 7)
that the inner infgral is a diferential area to weighted area forag{
tor. In the Galerkin case, the weighted area still corresponds to the
domain of a basis functionubthe diferential area corresponds to
some pointx in the domain &f . We will express this differential
area to basis form factor E§(j . Our equation simplifies to

Kj; = pkg[dx fi(x)FX]- (EQ9)

The contents of the imgeal describe a basis to basis foantbr
This integral is in a form that is appropriate for Gaussian quadrature
[2], [16]. The problem of computiny;. is nav reduced to comput-
ing a set of formdctors, adding the results multiplied by the appro-
priate weight and multiplying by the reflectivity.

To compute the basis to basis foantbr with gaussian quadrature
we start by specifying the geee of precision [2]. This pvides us
with a collection of gauss points on each element. We compute an
array of diferential area to basis forradtorsFF (computed by the
algorithm in section 4.1) at each of theugs points. This hemicube
will affect the basis to basis formdtors associated with each node
in the element. After we lra completed computing the entire matrix
of form factors, we multiply each row by the reflectivity to obtain
K. This gives us the following algorithm



Initialize  to OF includes the time spent generating and solving the matexddvot
For each patch p include 1/0O times. We could not include the time spent generating
a, = area of patch P the mesh since some of the following meshes were generated by
For each ga“f; plo'”t dinat ! ¢ ooint | hand. Because of its fiibility, Heckberts software z-luffer [7] was
V%' ;a;gitioszg':;i:pgﬁ:? | used to project the gimonment onto the hemicube. Although the pro-
' gram computed the radiosity for the red, green and blue components,

FF = array of form factors computed at Q )
For each node  ini p only the blue component was used to determine the error.
For j = 1 to total number of nodes We start by analyzing the source of error in Figure 1. Most of the
Fij = Fyj +a,xw, xf(Q) xFF(j) error in this image is due to the shadow edges on the floor. By ren-
Endfor dering the radiosity of the floor as a 3-D shadedserfwe enhance
Endfor the radiosity discontinuities thabwld not be visible when the scene
Endfor is rendered as an image. Figure 1 alsevshbe radiosity of the floor
Endfor of the reference scene rendered in this mariites gives us more
The matrixM is very sparse.davoid using anxcessie amount information about where errors occur as well as how close our

of memory due to random access, the matrix is computed one rowapproximation is to a converged reference.

atatime. This requires us to visit a node and find the patches which - The reference image appeared tosiesenely smooth. Hoever,
share this node. The winged edge data structunesalls to easily when we lookd at the floor rendered as a shadedhsetfslight dis-

determine adjacent elements. The algorithm for compitingnd continuities due to hemicube aliasing were detected. Thesettif
E is as follows. are referred to as plaid patterns in [1] and [15]. When the edge of a
Initialize andV to0 E light source is parallel or at a 45glee angle to the edge of the hemic-
For each node i ube, the amount of aliasing is greatly enhanced. In some scenes it
P = set of patches containing i may be possible to determine an ideal rotation for the hemicube in
For each patch pOP order to reduce aliasingbwhen we introduce occlusion, the appar-
a, = area of patch p ent edge of a source changes. In general, we can reduce the chance
J = set of nodes in p

of a poor alignment by introducing a random rotation to the hemic-
ube. This gies a slightimpreement in terms of numerical error and
a big impravement in terms of visually perceptible erffarimprove

I; =local node number of node i
Foreach jOJ
|j = local node number of node j

M = M +a,xM(;, 1)) our referencewen furtheywe soled for the radiosity seral times
Endfor and averaged the results.
E = E+a,x EL1) We applied a uniform and discontinuity mesh to Figure 1. By
Endfor increasing the resolution of a mesh, the amount of computation time
Endfor increases as the error decreases.dWl not have access to triangu-

To solve forB , we multiply each row of the form factor matrix  |ation softvare that wuld easily allv us to create aaviable sized
by the reflectiities and sole the matrix using the Gauss-Seidel iter-  discontinuity mesh. An interagt mesh generator called Maze [6]
ation method. was used to produce a set of quadrilaterals which were then splitinto
5  Analysis triangles. One of the goals used in producing this mestteimit

o ] the number of slices or poorly formed elements. Once the maesh w

A quantitatve measurement of the acciraf our algorithms are  created, we were easily able to further suidi the resulting trian-
obtained by applying an error metric. We will apply this metricto  gles to improve the accuracy of our solution.
images generated by our collocation and Galerkin algorithms. Figure 2 shows the results of the algorithm when applied to the
51  Error Metric scene shan in Figure 1 with 2 100 x 100 x 50 hemicube. A log error

] o ) ~ ofless than -1.3 generated an image whiak wery difficult to dis-

We determine the RMS radiosity reconstruction error by rendering tinguish from the reference. A log error of less than -1.6 generated
each suice indvidually at the same distance. Our reference image gn image which could not be distinguished from the refererere e
was obtained by using quadratic basis elements on a discontinuitywith high quality display devices. A log error of approximately -2
meshed version of our scene and applying a hemicube with a resowas mostly due to hemicube aliasing. Note that the linear and con-
lution of 314 x 314 x 157. Since 157 is a prime numiherchance  stant uniform elements did not obtain these ernagein the time
of a correlation with a lower resolution hemicube is reduced. The frame shw/n. The efect on the formdctors due to V|S|b|||ty Changes
floating point radiosity of each pekis compared to the sameg@ix s basically quadratic, so we did not expect or see a great deal of
in each rendered sade of the reference. The error is measured using improvement in the cubic elementer the quadratic element. Dis-
continuity meshing shveed the most impreaa results. The linear
discontinuity elements produced the same error as the best uniform
elements in half the time. The quadratic and cubic discontinuity ele-

(EQ 10) ments produced an errortd so small that further reduction could
only be obtained by increasing the resolution of the hemicube.
wherer; is the radiosity value at pixel in the reference segne, The collocation algorithm &s applied to other simple scenes. In

is the radiosity at pid i in a test scene andis the total number of some casesyen the higher ordet™ elements did not conform well
pixels occupied by a rendered image of every surface. Computing to the radiosity solution along edges of higiiance. These edges
the error in this manner reduces the chance of bias since it is improbean be found near dimly lit corners of a closed room.
able that any particular node in our scene will be on a pixel center. .

5.3  Galerkin Results

The Galerkin method was also implemented on the Cray YMP/
The collocation algorithm as implemented ona Cray YMP/C90.  C90. This method required only minor modifications to tistieg
Timing information vas obtained using the Urtimesfunction. The collocation algorithm. The program was implemented so that the
computation time w&s considered to be the time spetogiting the user could specify the number ofydees of precision. ltas shavn
code added to the time spent completing system calls. The total timein [14] that in the case of the uniform mesh, the optimgteks of

5.2  Collocation Results
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precision for the constant, lineguadratic and cubic basis were one,

elements can model thesegagradients. The criteria for sutsidion

one, four and four, respectively. At these levels the algorithm pro- would require some investigation [10].

duced less error in less time. We also found that the discontinuity

We restricted our elements to plalﬁor triangles. V& could use

mesh produced these same optimal degrees of precision. The consquare oreen cuned elements. The cuad element may require ray
stant basis Galerkin algorithm is identical to the constant basis col-tracing for computing the fornattors, It it would allow us to use

location algorithm [14], so we don't present these results.

a uniform and discontinuity mesh for the scene in Figureslus®d

exact geometries. An fldditional immement to the accuramight
Figure 2 shws the results of applying the Galerkin method using be possible by usin@
Modifications to the algorithms for progressive radiosity is pos-

reconstruction technique [12].

the same 100 x 100 x 50 resolution hemicube for these tests. The quasible. The collocation method could be used with a ray tracing algo-

dratic and cubic basis achedl a laver error than the linear for both
meshes. The quadratic and cubic discontinuity mesin agoduced
very small error leels immediatelyin comparison to the collocation
method, the Galerkin method as we implemented it took consider-
ably more time to achieve the same error level.

In general, the number of patches for a scene with triangular ele-
ments is larger than the number of vertices. Since the number of
hemicubes used in Gaussian quadrature depends on the number
patches, our Galerkin implementation required many more hemic-
ubes to compute the matrices for the same scene. Figa® dowm-
puted using the collocation method with a quadratic basis. This
required 2282 hemicubes. Our Galerkin implementation would
require 3042 hemicubes if we used just 2 degrees of precision.

(1]

6 Conclusions and Future Work

We hae presented taradiosity algorithms which use the finite 2]
element method and higher order basis functions to produce a more
accurate solution in less time. The collocation methodeatto be [3]
easier to implement and oaged fster than the Galerkin method
for the scenes presented. By applying discontinuity meshing, our
algorithms computed an accurate solution in only a fraction of the
time used by traditional methods.

Applying adaptive meshing to these algorithms could present a
challenging problem. In a more traditional approach, wele/sub-
divide our patches if the gradient became togdaf he higher order

(4]
(5]

(6]
(7]
(8]
El

(10]
Figure 1 Reference scene used for eemgence test. On the left is the
rendered scene. On the right is a height field showing the radiosity of the
floor. [11]
Collocation Galerkin
0 o 0
5 A } [12]
05 D 05
Q32 S T
S ¢ Ql 0 < Y 312
(T e e R A ot —
g | Rk 2 e : [13]
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Figure 2  Error plots. The solid lines are the results from the uniform

mesh. The dashed lines and single points are from the discontinuity mesh.[ls]
The numbers indicate the degree of the basis functions. The error Is

reduced by increasing the number of elements.
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rithm similar to [15]. In this case weonld have to sample the entire
basis domain rather than a single patch. Creating an efficient algo-
rithm would be another puzzle.
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