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Abstract

Many of the current radiosity algorithms create a piecewise con-
stant approximation to the actual radiosity. Through interpolation 
and extrapolation, a continuous solution is obtained. An accurate 
solution is found by increasing the number of patches which describe 
the scene. This has the effect of increasing the computation time as 
well as the memory requirements. By using techniques found in the 
finite element method, we can incorporate an interpolation function 
directly into our form factor computation. We can then use less ele-
ments to achieve a more accurate solution. Two algorithms, derived 
from the finite element method, are described and analyzed.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graph-
ics]: Picture/Image Generation - Display Algorithms. 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: finite elements, form-factor, 
global illumination, radiosity.

1 Introduction

The traditional radiosity algorithm computes the form factors at 
a collection of points [5]. There have been several techniques used 
to enhance and speed up the algorithm. Cohen described an algorithm 
which enabled more complex environments to be rendered by plac-
ing a half cube or “hemicube” at each evaluation point and sampling 
through pixels on the hemicube surface [3]. We can improve the accu-
racy of the solution by increasing the resolution of the hemicube or 
by analytically determining the form factors [1], [13]. Further 
improvements can be made by producing a mesh which follows the 
discontinuities introduced by shadow boundaries and surface inter-
sections [9], [10].

Rather than assuming the radiosity arrives from piecewise con-
stant patches, Max and Allison introduced an algorithm which 
assumed a piecewise linear approximation [11]. This algorithm 
works by placing an interpolation function directly into the form fac-
tor computation. Using this technique, a more accurate solution can 
be obtained with less patches [9]. An extension to this algorithm is 
to increase the order of the interpolation function to quadratic, cubic 
or even higher [16]. These interpolation functions are what the finite 
element method refers to as basis functions [2].

2 Basis Functions

The details of the basis functions, elements and nodes can be found 
in [2]. We will only give a brief overview to establish our terminol-
ogy. 

2.1 Approximation Function

The finite element method associates a basis function for each of 
the local nodes in a representative element. The basis function for a 

global node becomes a combination of basis functions defined on the 
local nodes of all elements which contain the global node [2], [9], 
[14]. In this paper a node is “contained” or “in” an element if it is 
on the boundary or interior of the element. Using the basis function 

 and radiosity  associated with each node , we can approximate 
the radiosity at a point  in our environment as a linear combination 
of the radiosities of each node or

(EQ 1)

2.2 Element Construction

Due to its compatibility with triangulation and orientation inde-
pendence using Gouraud shading, we have chosen the triangle as our 
element. We also need to concern ourselves with the connectivity of 
this element. Our solution will be much more accurate if we align 
our mesh to the  and  discontinuities as described by [9] and 
[10]. We can obtain elements with  continuity by using the same 
nodes on the boundary of adjacent elements [2], [4]. By definition, 
the  elements can accurately model  discontinuities. A  dis-
continuity would result from surface intersection, discrete changes 
in emissivity or discrete changes in reflectivity. These can be mod-
eled by aligning our edges to the discontinuities and duplicating the 
nodes along the edge [9]. Higher order discontinuities could be mod-
eled by selectively enforcing higher derivative continuity across the 
common edges between adjacent elements, but this is quite complex 
[12] so we approximate them by using smaller elements.

3 Finite Element Methods

This section will give a very brief introduction to finite element 
mathematics to provide us with modifications needed for the radi-
osity algorithm to incorporate higher order elements and the previ-
ously discussed basis functions.

3.1 Residual Error

We start by reiterating an equation from [8] which describes the 
radiosity for all points in the environment

(EQ 2)

where

(EQ 3)

Exact solutions to (EQ 2) are known only in the simplest of geom-
etries [8]. The exact solution can be approximated using the linear 
combination in (EQ 1). Traditional radiosity methods can be thought 
of as having a constant basis function of  for all points  
inside patch i. These constant basis radiosity algorithms will not be 
reiterated. The method introduced in [11] uses linear basis functions 
centered on the vertices. We will be presenting algorithms for extend-
ing polynomial basis radiosity to higher order polynomials.

The traditional radiosity method assigns an emissivity and reflec-
tivity to each patch. We can enhance our radiosity algorithms by 
claiming that the exact emissivity and reflectivity are also defined by 
an approximation function similar to (EQ 1). This would allow us 
to describe variations in emissivity and reflectivity up to the degree 
of the basis function. For the sake of brevity, we will assume that the 
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emissivity  and reflectivity  are constant across each individual 
surface, .

We can replace  in (EQ 2) by our approximation function to 
obtain an approximate solution for . If our approximation is 
good, then the approximate solution for  and the value obtained 
by applying (EQ 2) at point  should be close. If our approximate 
solution is exact, the difference between these two approximations 
will be zero. This gives us a measure of the accuracy of our approx-
imation and is defined as the residual error. More specifically, it is 
expressed as

(EQ 4)

3.2 Method of Weighted Residuals

A general approximation technique is the method of weighted 
residuals. This technique requires the residual error to be orthogonal 
to a set  of weighting functions over the domain . It was 
shown in [8] that the resulting equations could be expressed in matrix 
form as

(EQ 5)

where B is a column vector containing the coefficients to our approx-
imation and

             

(EQ 6)

             

where  is the index of the surface supporting weight function .

4 Higher Order Algorithms

We have presented a set of interpolation functions in section 2 and 
combined them with our radiosity integral using the finite element 
method in section 3. This gave us a matrix equation where each com-
ponent of the matrix contained a weighting function. By replacing 
the weights with different functions we obtain the point collocation 
and Galerkin methods [8].

4.1 Point Collocation Method

The traditional gathering algorithm as well as the linear vertex 
radiosity method introduced in [11] are examples of the point col-
location method. This method replaces the weighting function in (EQ 
6) with the dirac delta [8]. This simplifies the  in (EQ 5) to be the 
identity matrix and  to be a column vector containing the emis-
sivities at each node. The elements of  have the value

(EQ 7)

The contents of the integral describes a differential area to 
weighted area form factor where the area is defined by the domain 
of the basis associated with node . We will call this a differential 
area to basis form factor. This integral can be solved using the 
approach specified in [11]. The pseudocode is as follows

Initialize  to 0
For each pixel  in hemicube

 = index of patch at 
 = point on surface of 

For each node  in patch 
 =  + 
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EndFor
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4.2 Galerkin Method

The Galerkin method replaces the weighting functions with the 
basis functions giving us the following definitions for the matrices 
of (EQ 5).

             

(EQ 8)

             

We’ll start by looking at the equation for . We only need to 
concern ourselves with the area where  and  are both non-zero. 
This will only occur if an element can be found which has the nodes 
i and j on the boundary or interior. Clearly this occurs if i equals j. 
We can easily compute  by considering only the elements which 
contain node  and looking through that small set of elements for the 
elements which also contain node . We then integrate across these 
elements individually and sum the results. The formula for 2-D 
change of variables from the global triangle to the representative ele-
ment gives us the Jacobian determinant which is the area of the global 
element. Therefore, the integral across an element is the same as the 
integral across the representative element multiplied by the area of 
the element. The final result is a constant multiplied by the area of 
the global element. The constant is dependent upon the relative posi-
tions of the local nodes corresponding to  and . We can store these 
constants in a matrix . This matrix is symmetrical, which is what 
we would expect by looking at the equation. The local node numbers 
for i and j correspond to the row and column of a location this matrix.

Solving for  follows a similar path. In this case, we must inte-
grate across the domain of the basis function. We can form a vector 

 which contains the integral of all of the local nodes across the 
representative element. To compute , we look at each element 
which has node i, use the local node number as an index into , 
multiply that array element by the area and then add it to the current 
value of . After we visit each element, we multiply our result by 
the node emission .

Computing  is slightly more involved. We know from (EQ 7) 
that the inner integral is a differential area to weighted area form fac-
tor. In the Galerkin case, the weighted area still corresponds to the 
domain of a basis function, but the differential area corresponds to 
some point  in the domain of . We will express this differential 
area to basis form factor as . Our equation simplifies to

(EQ 9)

The contents of the integral describe a basis to basis form factor. 
This integral is in a form that is appropriate for Gaussian quadrature 
[2], [16]. The problem of computing  is now reduced to comput-
ing a set of form factors, adding the results multiplied by the appro-
priate weight and multiplying by the reflectivity.

To compute the basis to basis form factor with gaussian quadrature 
we start by specifying the degree of precision [2]. This provides us 
with a collection of gauss points on each element. We compute an 
array of differential area to basis form factors  (computed by the 
algorithm in section 4.1) at each of the gauss points. This hemicube 
will affect the basis to basis form factors associated with each node 
in the element. After we have completed computing the entire matrix 
of form factors, we multiply each row by the reflectivity to obtain 

. This gives us the following algorithm
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Initialize  to 0
For each patch 

 = area of patch 
For each gauss point 

 = global coordinate of point 
 = weight assigned to point 
 = array of form factors computed at 

For each node  in 
For j = 1 to total number of nodes

Endfor
Endfor

Endfor
Endfor

The matrix  is very sparse. To avoid using an excessive amount 
of memory due to random access, the matrix is computed one row 
at a time. This requires us to visit a node and find the patches which 
share this node. The winged edge data structure allows us to easily 
determine adjacent elements. The algorithm for computing  and 

 is as follows.

Initialize  and  to 0
For each node 

 = set of patches containing 
For each patch 

 = area of patch 
 = set of nodes in 
 = local node number of node 

For each 
 = local node number of node 

Endfor

Endfor
Endfor

To solve for , we multiply each row of the form factor matrix 
by the reflectivities and solve the matrix using the Gauss-Seidel iter-
ation method.

5 Analysis

A quantitative measurement of the accuracy of our algorithms are 
obtained by applying an error metric. We will apply this metric to 
images generated by our collocation and Galerkin algorithms.

5.1 Error Metric

We determine the RMS radiosity reconstruction error by rendering 
each surface individually at the same distance. Our reference image 
was obtained by using quadratic basis elements on a discontinuity 
meshed version of our scene and applying a hemicube with a reso-
lution of 314 x 314 x 157. Since 157 is a prime number, the chance 
of a correlation with a lower resolution hemicube is reduced. The 
floating point radiosity of each pixel is compared to the same pixel 
in each rendered surface of the reference. The error is measured using

(EQ 10)

where  is the radiosity value at pixel  in the reference scene,  
is the radiosity at pixel  in a test scene and  is the total number of 
pixels occupied by a rendered image of every surface. Computing 
the error in this manner reduces the chance of bias since it is improb-
able that any particular node in our scene will be on a pixel center.

5.2 Collocation Results

The collocation algorithm was implemented on a Cray YMP/C90. 
Timing information was obtained using the Unix times function. The 
computation time was considered to be the time spent executing the 
code added to the time spent completing system calls. The total time 
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includes the time spent generating and solving the matrix. We do not 
include I/O times. We could not include the time spent generating 
the mesh since some of the following meshes were generated by 
hand. Because of its flexibility , Heckbert’s software z-buffer [7] was 
used to project the environment onto the hemicube. Although the pro-
gram computed the radiosity for the red, green and blue components, 
only the blue component was used to determine the error.

We start by analyzing the source of error in Figure 1. Most of the 
error in this image is due to the shadow edges on the floor. By ren-
dering the radiosity of the floor as a 3-D shaded surface, we enhance 
the radiosity discontinuities that would not be visible when the scene 
is rendered as an image. Figure 1 also shows the radiosity of the floor 
of the reference scene rendered in this manner. This gives us more 
information about where errors occur as well as how close our 
approximation is to a converged reference.

The reference image appeared to be extremely smooth. However, 
when we looked at the floor rendered as a shaded surface, slight dis-
continuities due to hemicube aliasing were detected. These artifacts 
are referred to as plaid patterns in [1] and [15]. When the edge of a 
light source is parallel or at a 45 degree angle to the edge of the hemic-
ube, the amount of aliasing is greatly enhanced. In some scenes it 
may be possible to determine an ideal rotation for the hemicube in 
order to reduce aliasing, but when we introduce occlusion, the appar-
ent edge of a source changes. In general, we can reduce the chance 
of a poor alignment by introducing a random rotation to the hemic-
ube. This gives a slight improvement in terms of numerical error and 
a big improvement in terms of visually perceptible error. To improve 
our reference even further, we solved for the radiosity several times 
and averaged the results.

We applied a uniform and discontinuity mesh to Figure 1. By 
increasing the resolution of a mesh, the amount of computation time 
increases as the error decreases. We did not have access to triangu-
lation software that would easily allow us to create a variable sized 
discontinuity mesh. An interactive mesh generator called Maze [6] 
was used to produce a set of quadrilaterals which were then split into 
triangles. One of the goals used in producing this mesh was to limit 
the number of slices or poorly formed elements. Once the mesh was 
created, we were easily able to further subdivide the resulting trian-
gles to improve the accuracy of our solution.

Figure 2 shows the results of the algorithm when applied to the 
scene shown in Figure 1 with a 100 x 100 x 50 hemicube. A log error 
of less than -1.3 generated an image which was very difficult to dis-
tinguish from the reference. A log error of less than -1.6 generated 
an image which could not be distinguished from the reference even 
with high quality display devices. A log error of approximately -2 
was mostly due to hemicube aliasing. Note that the linear and con-
stant uniform elements did not obtain these error levels in the time 
frame shown. The effect on the form factors due to visibility changes 
is basically quadratic, so we did not expect or see a great deal of 
improvement in the cubic element over the quadratic element. Dis-
continuity meshing showed the most impressive results. The linear 
discontinuity elements produced the same error as the best uniform 
elements in half the time. The quadratic and cubic discontinuity ele-
ments produced an error level so small that further reduction could 
only be obtained by increasing the resolution of the hemicube.

The collocation algorithm was applied to other simple scenes. In 
some cases, even the higher order  elements did not conform well 
to the radiosity solution along edges of high variance. These edges 
can be found near dimly lit corners of a closed room.

5.3 Galerkin Results

The Galerkin method was also implemented on the Cray YMP/
C90. This method required only minor modifications to the existing 
collocation algorithm. The program was implemented so that the 
user could specify the number of degrees of precision. It was shown 
in [14] that in the case of the uniform mesh, the optimal degrees of 
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precision for the constant, linear, quadratic and cubic basis were one, 
one, four and four, respectively. At these levels the algorithm pro-
duced less error in less time. We also found that the discontinuity 
mesh produced these same optimal degrees of precision. The con-
stant basis Galerkin algorithm is identical to the constant basis col-
location algorithm [14], so we don’t present these results.

Figure 2 shows the results of applying the Galerkin method using 
a uniform and discontinuity mesh for the scene in Figure 1. We used 
the same 100 x 100 x 50 resolution hemicube for these tests. The qua-
dratic and cubic basis achieved a lower error than the linear for both 
meshes. The quadratic and cubic discontinuity mesh again produced 
very small error levels immediately. In comparison to the collocation 
method, the Galerkin method as we implemented it took consider-
ably more time to achieve the same error level.

In general, the number of patches for a scene with triangular ele-
ments is larger than the number of vertices. Since the number of 
hemicubes used in Gaussian quadrature depends on the number of 
patches, our Galerkin implementation required many more hemic-
ubes to compute the matrices for the same scene. Figure 1 was com-
puted using the collocation method with a quadratic basis. This 
required 2282 hemicubes. Our Galerkin implementation would 
require 3042 hemicubes if we used just 2 degrees of precision.

6 Conclusions and Future Work

We have presented two radiosity algorithms which use the finite 
element method and higher order basis functions to produce a more 
accurate solution in less time. The collocation method proved to be 
easier to implement and converged faster than the Galerkin method 
for the scenes presented. By applying discontinuity meshing, our 
algorithms computed an accurate solution in only a fraction of the 
time used by traditional methods.

Applying adaptive meshing to these algorithms could present a 
challenging problem. In a more traditional approach, we would sub-
divide our patches if the gradient became too large. The higher order 

elements can model these large gradients. The criteria for subdivision 
would require some investigation [10].

We restricted our elements to planar  triangles. We could use 
square or even curved elements. The curved element may require ray 
tracing for computing the form factors, but it would allow us to use 
exact geometries. An additional improvement to the accuracy might 
be possible by using  reconstruction technique [12].

Modifications to the algorithms for progressive radiosity is pos-
sible. The collocation method could be used with a ray tracing algo-
rithm similar to [15]. In this case we would have to sample the entire 
basis domain rather than a single patch. Creating an efficient algo-
rithm would be another puzzle.
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Figure  2 Error plots. The solid lines are the results from the uniform 
mesh. The dashed lines and single points are from the discontinuity mesh. 
The numbers indicate the degree of the basis functions. The error is 
reduced by increasing the number of elements.
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Figure  1 Reference scene used for convergence test. On the left is the 
rendered scene. On the right is a height field showing the radiosity of the 
floor.
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