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Abstract
We develop a radiance formulation for discrete three point transport,
and a new measure and description of reflectance:area reflectance.
This formulation and associated reflectance allow an estimate of er-
ror in the computation of radiance across triples of surface elements,
and lead directly to a hierarchical refinement algorithm for global
illumination.

We have implemented and analyzed this algorithm over surfaces
exhibiting glossy specular and diffuse reflection. Theoretical growth
in light transport computation is shown to beO(n+k3 ) for sufficient
refinement, where n is the number of elements at the finest level
of subdivision over an environment consisting ofk input polygonal
patches — this growth is exhibited in experimental trials. Naive
application of three point transport would require computation over
O(n3) element-triple interactions.

CR Categories and Subject Descriptors: I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism.
Key Words: adaptive meshing, global illumination, radiosity, ray
tracing.

1 Introduction
A major open problem in image synthesis is the efficient solution of
the rendering equation. Radiosity methods have been quite success-
ful over environments containing surfaces that exhibit only diffuse
reflection. Unfortunately, very few materials are purely Lamber-
tian reflectors, and efficient solution techniques have not yet been
developed for more general specular or glossy reflection functions.

The rendering equation is an integral equation, and the solutions
to complicated integral equations are generally obtained using either
Monte Carlo or finite element techniques. Monte Carlo algorithms
sometimes go under the name of distributed or stochastic ray tracing
and are the most commonly employed in computer graphics (e.g.
see [4, 5, 9, 12, 16]). Monte Carlo techniques have the advantage
that they are easy to implement and can be used for complicated
geometries and reflection functions. Unfortunately, their disadvan-
tage is that they are notoriously inefficient. The second approach,
the finite element method, has been very successfully applied to
the rendering equation under the radiosity assumption, but has only
begun to be employed in the general case, and with limited success.
For example, Immel et al. [8] discretized radiance into a lattice of
cubical environment maps, and solved the resulting system. More
recently, Sillion et al. [13] used a mesh of spherical harmonic func-
tions to represent radiance, and solved the resulting system using a
shooting algorithm.

There are many ways to parameterize the rendering equation, and
each leads to a different choice of basis functions. In the transport
theory community two techniques are common: directional sub-
division (the method of discrete ordinates or SN ), and spherical
harmonics (PN ). These two techniques roughly correspond to the
methods of Immel et al. and Sillion et al., although many interest-
ing variations are possible. Our approach is somewhat different, and
based on Kajiya’s original formulation of the rendering equation [9].
Under this formulation, the rendering equation is expressed in terms
of three point transport. That is, the kernel of the integral expresses
the transport of light from a point on the source to a point on the
receiver, via a point on a reflector. Given this formulation, the three
point rendering equation can be discretized over pairs of elements
to form a linear system of equations. Solving this system yields the
radiance transported between elements. Note that this approach is
very similar to the radiosity formulation.

The problem with finite element methods is that the matrix of
interactions is very large for interesting environments. For a given
environment of k input polygonal patches containing n elements
at the finest level of refinement, the three point discretization that
we are proposing generates ann3 matrix of interactions. However,
in this paper we show that we can accurately approximate then3

reflectance matrix with O(n + k3) blocks, in a way very similar
to our recent hierarchical radiosity algorithm [7]. In that paper we
showed how the n2 form factor matrix could be approximated with
O(n + k2) blocks, resulting in a very efficient algorithm in both
space and time. Although the results presented in this paper are
preliminary, we believe a hierarchical finite element approach along
these lines will ultimately lead to a fast, efficient algorithm.

In the following section we describe our application of the fi-
nite element element method to the three point rendering equation,
yielding a radiance formulation for discrete transport. In Section 3
we present a simple adaptive refinement algorithm for computation
over this formulation, and the iterative solution technique employed
for the actual calculation of transport. In Section 4 we discuss our
implementation of the algorithm over glossy reflection, and in Sec-
tion 5 we present some experiments and results. An appendix to
this paper contains details of our error analysis for discrete transport
under the glossy model.

2 Discrete Three Point Transport

The algorithm presented in this paper operates through two func-
tions: refinement of the environment to form a hierarchy of discrete
interactions, patches and elements, and the actual computation of
illumination over this hierarchy.

In this section we develop the basis for both discretization and
transport. We derive a radiance formulation for three point transport,
and a new measure and description of reflectance,area reflectance.
This radiance formulation and associated reflectance provide a natu-
ral criterion for discretization under illumination and reflection, and
allow both the computation of radiance across triples of individual
surface elements, and the expression and computation of all light
transport over all surfaces.
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Figure 1: Geometry of Reflection

2.1 A Radiance Formulation for Three Point
Transport

When computing and imaging illumination within an environment,
we are interested in the transport of light from surface to surface —
it is this interaction of surfaces that characterizes illumination, in the
absence of participatory media. Reflection within an environment
may thus be naturally expressed over triples of surfaces. Consider
surfaces A, A0, and A00 (Figure 1) — we will examine the transport
of light incident at A0 originating at A and reflected toward A00.

Let !0

i and !0

r be the solid angles subtended at pointx0 by A and
A00, respectively. Consider differential solid angles at~!0

i and ~!0

r —
by definition of the bidirectional reflectance-distribution function
(BRDF), fr [11], the radiance L(~!0
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We may then reparameterize overA and A00 to yield:Z
A00

L(x0; x00)G(x0; x00)dx00 =

Z
A

Z
A00

fr(x; x
0; x00)L(x; x0)G(x; x0)G(x0; x00)dx00dx

where

G(x; x0) =
cos �r cos �

0

i

jx� x0j2
v(x; x0)

where v(x; x0) is 1 if points x, x0, are mutually visible, and 0
otherwise. Note that G is very similar to a differential form factor.

We integrate over A0, thus introducing all three areas into the
formulation:Z
A0

Z
A00

L(x0; x00)G(x0; x00)dx00dx0 = (1)

Z
A

Z
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Z
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fr(x; x
0; x00)L(x; x0)G(x; x0)G(x0; x00)dx00dx0dx

We may now rewrite the equation in discrete form. LetAj andAk

be subareas ofA0 andA00 such thatL(x0; x00) is nearly constant over
their surfaces. The left side of equation (1) may then be rewritten,
bringing radiance out of the integral asLjk:
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Figure 2: A Reflection Product

by definition of the diffuse form factor,Fjk.
We may similarly discretize A as Ai, and rewrite the right side

of equation (1) as:

Lij

Z
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Z
Aj

Z
Ak

fr(x; x
0; x00)G(x; x0)G(x0; x00)dx00dx0dx =

X
i

�LijAiFijRijk

where Rijk is defined such that

�AiFijRijk =Z
Ai

Z
Aj

Z
Ak

fr(x; x
0; x00)G(x; x0)G(x0; x00)dx00dx0dx

Note that, by the symmetry of fr and G:

AiFijRijk = AkFkjRkji

We thus have:

�LjkAjFjk = �
X
i

LijAkFkjRkji

= �
X
i

LijAjFjkRkji

by the reciprocity of form factors, and thus:

Ljk =
X
i

LijRkji

The three dimensional character of Rkji over indices i, j, k leads
naturally to a three dimensional matrix formulation for the above
system. Consider a product over ann � n� n Rkji “matrix” and
an n�n� 1Lij matrix producing ann�n� 1 matrix of reflected
radiances, as shown in Figure 2. Note that theRkji matrix is of size
O(n3) — the hierarchical method discussed in subsequent sections
of this paper addresses more tractable representation of this matrix.

Taking into account emission, we have derived a radiance for-
mulation for three point transport:

Ljk = Ejk +
X
i

LijRkji (2)

This formulation states that:

The radiance at Area j in the direction of Area k is equal
to the radiance emitted by j in the direction of k, plus,
for every Area i, the radiance at i in the direction of j
multiplied by the area reflectanceRkji.

Note that equation (2) is very similar to the radiosity formulation:

Bj = Ej + �j
X
i

BiFji
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2.2 Area Reflectance
The quantityRkji has a natural and satisfying physical significance
— it is an expression of reflectance over areasAi, Aj , and Ak.

Consider the fraction of the radiant flux transported from Ai

incident to Aj that is reflected in the direction of areaAk:R
Ai

R
Aj

R
Ak

fr(x; x
0; x00)L(x; x0)G(x; x0)G(x0; x00)dx00dx0dxR

Ai

R
Aj

L(x; x0)G(x; x0)dx0dx

If we assume that incident radiance is uniform and isotropic over
both !0

i (as induced by Ai) and Aj , we may divide through by
L(x; x0), yielding:

�(Ai; Aj ; Ak) �R
Ai

R
Aj

R
Ak

fr(x; x
0; x00)G(x; x0)G(x0; x00)dx00dx0dxR

Ai

R
Aj

G(x; x0)dx0dx

We define �(Ai; Aj ; Ak) to be area reflectance. Note that area
reflectance is similar to biconical reflectance [11], save that it is also
integrated over the reflecting surface.

By definition of Rijk:

Rijk = �(Ai; Aj ; Ak)

Conservation of energy over reflection, and the reciprocity rela-
tion derived for Rijk above, constitute fundamental properties of
area reflectance:

1.
X
k

Rijk � 1, for fixed i, j.

2. AiFijRijk = AkFkjRkji.

where equality is achieved in property 1 over complete enclosures
and perfect reflectivity.

2.3 Evaluation ofRkji

In this section we examine the evaluation ofRkji over given patches
Ai, Aj , Ak.

Recall:

Rkji =

R
Ak

R
Aj

R
Ai

fr(x
00; x0; x)G(x00; x0)G(x0; x)dxdx0dx00

R
Ak

R
Aj

G(x00; x0)dx0dx00

We assume that discrete areas Ai, Aj , Ak are of small enough
scale that fr andG are relatively constant over their surfaces. Then:

Rkji =
SkjiGkjGjiAkAjAi

GkjAkAj

= SkjiGjiAi

where S is the discretized value of fr , Sijk = Skji = Sxkxjxi .

Note that the average value of G(x0; x) over Ai and Aj is
�Fji=Ai — we thus estimate GjiAi by �Fji, and compute Rkji

as:
Rkji = �FjiSkji

In practice, it will not be possible to compute the exact values
of Fji and Skji over Ai, Aj , Ak. We assume that we are able to
estimate these values, along with error bounds for each estimation.
Let �Fji and �Skji be error estimates for computedFji and Skji,
respectively. We then have an estimate for area reflectance in the
form:

Rkji = �(Fji +�Fji)(Skji +�Skji)

= �(FjiSkji +�FjiSkji +�SkjiFji +�Fji�Skji)

� �(FjiSkji +�FjiSkji +�SkjiFji)

Assuming �Fji < Fji, �Skji < Skji, we have neglected the last
term and estimate the error inRkji as �(�FjiSkji +�SkjiFji).

In general, and as is shown for glossy reflection in Section 4,
the accuracy of estimators for Fji and Skji is dependent on the
size of the patches over which reflectance is computed, relative
to their distance apart. As relative size decreases, so does error in
computation, leading directly to the adaptive refinement strategy for
illumination presented in Section 3 below.

3 Algorithms for Three Point Transport

3.1 Introduction

Recall equation (2):

Ljk = Ejk +
X
i

LijRkji

This equation suggests both a solution strategy for radiance under
three point transport, and a natural representation for illumination
within the solution system.

We may interpret equation (2) as a gathering iteration similar to
that employed for radiosity under diffuse reflection: the radiance
Ljk at patch Aj in the direction of patch Ak is found by gathering
radiances Lij in the direction of Aj at patches Ai. We may solve
for transport by gathering radiance for eachLjk, and successively
iterating to capture all significant re-reflection.

We are left with the question of what structure we are gathering
over and iterating upon. Note that all illumination is expressed
as the radiance at a given patch in the direction of another — it
is these patch-patch interactions that form the primary structure
within the solution system. All operation is over interactions: both
the representation and transport of radiance, and the iteration and
solution for illumination.
Consider the following structure:

typedef struct _interaction {

Patch *from;
Patch *to;

Color L;
Color Lg;

List *gather;

struct _interaction *nw, *sw, *se, *ne;

} Interaction;

A given interaction ij is defined by two patchesij->from and
ij->to, and represents the radiance at from in the direction of
to. This radiance is stored within the interaction as attribute L.
Lg is radiance gathered during the current solution iteration from
interactions contained in the list gather. Subinteractions nw, sw,
se, ne are the children of ij, induced by subdivision over either
from or to. The structure assumes quadtree refinement, leaving
northwest, southwest, southeast, and northeast descendants.

In the following sections we will present an algorithm for the
refinement and computation of illumination over a hierarchy of
interactions. The algorithm will operate by refining pairs of inter-
actions ij, jk (such that ij->to == jk->from), to ensure that
computed reflectance across the interaction pairs, and associated
patch triples, satisfies user specified error bounds. If a given in-
teraction pair ij, jk is satisfactory, the interactions are linked to
record that radiance may be gathered from ij to jk, otherwise one
or both interactions are subdivided and refinement applied to their
descendants.

After refinement, a gathering iteration may be carried out, each
interaction gathering radiance from interactions to which it has been
linked. The gathered radiances are then distributed within each re-
ceiving interaction hierarchy, and subsequent iterations computed
until satisfactory convergence has been achieved.

Note that, within this system, the eye may be regarded as simply
another object with which patches may interact. The radiance along
interactions to the eye provides the resulting view.
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3.2 Adaptive Refinement
Consider the following procedure:
Refine(Interaction *ij, Interaction *jk,

float Feps, float Seps, float Aeps)
{

float feps, seps;

feps = GeometryErrorEstimate(ij);
seps = ReflectionErrorEstimate(ij, jk);

if (feps < Feps && seps < Seps)
Link(ij, jk);

else if (seps >= Seps) {

switch(SubdivS(ij, jk, Aeps)) {

case PATCH_I:

Refine(ij->nw, jk, Seps, Feps, Aeps);
Refine(ij->sw, jk, Seps, Feps, Aeps);
Refine(ij->se, jk, Seps, Feps, Aeps);
Refine(ij->ne, jk, Seps, Feps, Aeps);

break;

case PATCH_J:
/* refine over children of ij and jk */

case PATCH_K:
/* refine over children of jk */

case NONE:
Link(ij, jk);

}
}

else { /* feps >= Feps */

switch(SubdivG(ij, jk, Aeps)) {

/* refine over children, or link, as */
/* directed by PATCH_I, J, K, or NONE. */

}
}

}

This procedure computes over pairs of interactions, and associated
patch triples, subdividing and recursively refining if estimated error
exceeds user specified bounds, linking the interactions for gathering
if the bounds are satisfied, or if no further subdivision is possible.
Feps and Seps are the bounds for geometric and reflection error,
respectively;Aeps specifies the minimum area a patch may possess
and still be subdivided. GeometryErrorEstimate and Re-
flectionErrorEstimateprovide estimations for��FjiSkji
and ��SkjiFji.
SubdivS and SubdivG control refinement for reflection and

geometry error, respectively. Both routines select a patch for refine-
ment, subdividing the patch and associated interaction(s) if required.
An identifier for the selected patch is returned — if no patch may
be subdivided, then NONE is passed back. Note that a given in-
teraction/patch may be refined against many different interactions
within the system, and thus may have already been subdivided when
selected by a Subdiv routine — in this case, the routine simply
returns the proper identifier.

The Subdiv routines should select for refinement patches that
are of large size relative to their distance from their partner(s) in the
transport triple. Form factor estimation is a convenient criterion for
the determination of such patches — a large differential to area form
factor Fdpq indicates that patch q is of large relative size. Care must
be taken in subdivision, however, to ensure that each interaction is
always subdivided in the same way for all refinements involving
that interaction.

The Subdiv routines thus choose for refinement the patch of
size at least Aeps that is of greatest form factor within ij and/or jk
that will not induce multiple sets of children over either interaction.
If patch pj is of greatest form factor over both ij and jk, and of
area greater than Aeps, then it is chosen for refinement (Figure 3 at
middle). Otherwise, if pj is selected over one interaction, but pi or
pk is selected over the other, then the “outside” patch is chosen for
refinement. Given two selected outside patches, SubdivS selects
the one of greater form factor relative to pj ; SubdivG selects pi
over pk, as pk has no direct effect on geometric accuracy. Note,
however, that even under SubdivG, if only pj and pk are allowed
subdivision, pk will be selected, although with further subdivision
the triple will eventually balance sufficiently to allow refinement
over pj .

Pj

Pi Pk

Figure 3: Refinement and Subdivision

3.3 Gathering Radiance
Gathering radiance over interactions may be written as a simple
procedure:
Gather(Interaction *jk)
{

Interaction *ij;

if (jk) {

jk->Lg = 0;

ForAllElements(ij, jk->gather)
jk->Lg += ij->L * Reflectance(ij, jk);

Gather(jk->nw);
Gather(jk->sw);
Gather(jk->se);
Gather(jk->ne);

}
}

We gather radiance into jk->Lg rather than directly into jk->L
to avoid the necessity of a push/pull with every invocation of the
procedure (see Section 3.4). The solution method is thus simple
Jacobi iteration, as opposed to Gauss-Seidel, as the hierarchical
structure imposes simultaneous rather than successive displacement.

3.4 Radiance within a Hierarchy
A gathering iteration results in received radiance scattered through-
out each interaction hierarchy. This gathered radiance must be dis-
tributed and accounted for over all ancestors and descendants of
each receiving interaction, in order to maintain the consistency and
correctness of the hierarchical representation of radiance between
patches.

We employ a distribution algorithm similar to that presented in
[7] for radiosity over patch/element hierarchies: gathered radiance
is “pushed” to the leaf interactions within each hierarchy to ensure
propagation to all descendants, and then “pulled” and distributed
back up from the leaves through all higher level interactions to
their common ancestor at the root. As is shown in [2], radiance
may be pushed unchanged within the interaction hierarchy, and area
averaged as it is pulled from child to parent.

4 Application over Glossy Reflection
In this section we discuss our implementation of the above algo-
rithms over glossy reflection.

4.1 The Reflection Function
We employ a highly simplified Torrance-Sparrow [15] model for
our glossy reflection function:

fg(~!i; ~!r) =
�+ 2

8�

cos� �m
cos �i cos �r

sh(�i; �r)

This function incorporates the facet distribution function cos� �m
developed by Blinn [3], normalized for projected facet area under
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[10]. Angle �m is that made to the mean surface normal by~!m, the
microfacet mirror orientation normal lying halfway between~!i and
~!r.

Function sh(�i; �r) expresses self-shadowing over microfacets
— for near specular surfaces, such self-shadowing or masking does
not become critical until relatively high �i or �r [6]. The imple-
mented system thus simply clamps sh from 1 to 0 when �i or �r
exceeds a preset �bound near the horizon. This scheme serves as a
crude approximation to the shadowing function; however, a better
strategy would be to employ a much fuller tabulation of the func-
tion, incorporated into the error analysis presented below. A more
complete discussion of shadowing and conservation of energy over
fg is presented in [2].

4.2 Error Estimation
Recall the general expression for error derived in Section 2.3:

�(�FjiSkji +�SkjiFji)

In implementation we have estimated the form factorFji by Fdji,
the form factor from a differential area at Aj to a disk of area Ai

centered at Ai, as was employed in [7]. As discussed in [7], the
relative error in this estimate is proportional to the estimate itself.
In our implementation we have thus estimated absolute error�Fji
as at most proportional to F 2

dji.A brief discussion of relative and
absolute error over hierarchical methods is presented in [2].

We now consider the error estimate �Skji. As discussed in the
appendix to this paper, we may compute bounding conesCi, Cr,
and Cm over all possible incident, reflected, and mirror orientation
directions induced at Aj by Ai and Ak (Figures 4 and 5 — these
figures are discussed more fully in the appendix). We may then
compute maximum and minimumcos� �m, cos �i, cos �r over these
cones, and estimate error by interval width. The full expression for
estimated error over transport is given in the appendix.

4.3 Clamping and Visibility
Evaluation of glossy reflectance over three surface areas, as required
by the gather iteration, may be difficult, particularly if surface sub-
division has been limited by Aeps rather than satisfaction of error
bounds, and if �, the facet distribution exponent, has high value. In
this case we must estimate the integral of a spikey function over a
relatively broad area.

Our solution is to band limit the BRDF in a fashion similar to
that presented by Amanatides [1]. We employ the cone estimation
techniques of the previous section to determine if the BRDF varies
significantly over the given patches — if this variance exceeds
a set bound, we “roughen” the reflecting surface, lowering � to
broaden the resulting reflection over the estimated cones. We then
renormalize the resulting blurred function, as described in [1], to

Figure 6: Geometric Configurations

prevent amplification of its low frequency components. We note
that the resulting antialiasing is relatively aggressive, significantly
dimming or eliminating reflections requiring overmuch blurring.

In implementation, we have computed visibility via jittered ray
casting and inheritance similar to that of [7], storing visibility data
in interactions as it is computed.

5 Results

5.1 Growth in Transport
We have measured the growth in transport triples (linked interac-
tions) versusn, the maximum number of elements at the finest level
of subdivision, over parallel, perpendicular, and “oriented” patches
(Figure 7). The corresponding geometries are shown in Figure 6.
The graphs show linear or near linear behavior over each range —
the graph of triples vs. n for the perpendicular case is slightly con-
cave over the lower data points, but subsides to linear with further
refinement.

In previous work [7] on hierarchical refinement for radiosity, it
was shown that for error estimate proportional toFdji, and sufficient
refinement, each subpatch may only interact with other patches
in a limited local neighborhood. As discussed in [7], each patch
may thus participate in at most c interactions, for some constant
c independent of n and k. Adaptive refinement thus generates at
most O(n) transport interactions. We will show a similar bound for
discrete three point transport under glossy reflection.

Recall that the estimate for error in computed transport is pro-
portional to �FjiSkji +�SkjiFji. Our argument depends on two
assumptions:

1. We may bound both�Skji and Skji by some Smax.
As discussed below, the lower thisSmax, the smaller the magni-

tude of the leading coefficient underling the resulting bound.
Note that our argument thus does not apply to perfect specular

reflection, as the corresponding BRDF incorporates the Dirac delta
function [11]. Equivalently, the argument does not hold overfg for
� = 1 (inducing mirror reflection), as we can not provide a finite
bound for S in this case.
For finite �, however, the desired bound over glossy reflection is
achieved by:

�+ 2

8
max(cos� �m)max(sec �i)max(sec �r)

The maxima over the secant terms are bounded by microfacet self-
shadowing.

2. �Fji and Fji within our error estimate are at most proportional
to Fdji.

Recall that we estimate Fji as Fdji, and �Fji as F 2
dji, thus

satisfying this assumption.

Given these assumptions, estimated error is at most proportional
to SmaxFdji.

We may now showO(n) growth, for sufficient refinement. Con-
sider refinement over interaction ij under an error estimate at worst
proportional to SmaxFdji. The error estimate is thus proportional to
Fdji, and therefore, for sufficient refinement, there are at mostO(n)
such interactions, as discussed in [7].

Consider now an error satisfied link from ij to an interaction jk.
For sufficient refinement under our subdivision scheme, we may
assume that form factors Fij , Fji, Fjk , Fkj over pi, pj , and pk are
roughly equal. Furthermore, these satisfying form factors depend
only on the error estimate, reflection function, and error bounds, not
on n or k.
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Figure 7: Triples vs. N over Geometry. Error bounds e = 0:1. Glossy exponent � = 25. For oriented case e = 0:005.
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Figure 8: Triples vs. N over �. The graph is over parallel polygons
for which the error bounds and interpolygon distance have been
doubled.

At worst the above form factors are such thatF��Smax < Eps,
where Eps is the most restrictive error bound. Note that, as stated
above, F�� depends only on the error estimate, reflection function
(ie. Smax), and error bounds. Only some constant number of such
form factors may be fitted over the directional hemisphere abovepj ,
and thus ij may only be linked to some constant number of interac-
tions jk. The total number of linked interactions, and corresponding
transport triples, is thus O(n).

Note that the above argument, although it establishes the desired
bound, may overstate the potential for links at a given interaction.
For a given ij, much of the directional reflection into the hemisphere
over pj may not achieve Smax, and may even be of maximum 0.
That is, the analysis ignores the modulation between the paired error
and value terms within the error estimate.

As � increases in magnitude, the corresponding boundSmax must
increase as well. We may thus expect greater growth in transport
computation with higher specular exponent, as shown in Figure 8.
Within this graph, growth is superlinear for� = 500, though further
trials over a higher range ofn = 500 : : : 2000 have shown that the
rate subsides to linear asn increases, allowing sufficient refinement
for the local neighborhood property to obtain.

Finally, we note that under specular reflection each element is
reflected across every other element perfectly, and to a first approx-
imation is visible from a constant number of other elements in the
environment (at least in the case of a convex enclosed room; the
analysis is complicated by occlusion and certain worst case align-
ments). Thus, the number of interactions is at least O(n2) — we
conjecture that it is no worse than this bound.

5.2 Illumination and Refinement
Figure 9 shows illumination and meshing over surfaces of varying
glossiness (specular exponent). Within each image, the reflecting
surface is perpendicular to the diamond shaped light source, and
we see the resulting reflection in the direction of the eye. Note
the conformation of meshing to the highlight over each surface.
The “stretched” nature of the highlight along the axis to the eye
is characteristic of Torrance-Sparrow reflection over fairly oblique
angles, and accounts for the increased sensitivity of meshing along
this axis. The rightmost three images in the figure show the meshing
from above. The illumination shown in these images is somewhat
unusual - it shows the reflection to the eye as though it had been
painted on the reflecting surface, and then viewed from a different
location, directly above. The images in Figure 11 show similar

Figure 10: Meshing for glossy and diffuse reflection

Figure 9
Max Elements 4160
Max Triples 262144
Computed patches elements triples time
� = 25 790 593 6706 (2.6%) 2.2s
� = 100 1290 968 24214 (9.2%) 8.0s
� = 500 874 656 12106 (4.6%) 4.1s

Figure 10
Max Elements 16448
Max Triples 1048576
Computed patches elements triples time
� = 500 1578 1184 7834 (0.75%) 5.0s

Figure 12
Max Elements 15138
Max Triples 222385209344
Computed patches elements triples time
� = 500 6479 4866 70995 (0.00003%) 3m13s

Table 1: Image Statistics

eye/offset views for the reflection of a garish checkerboard.
The image in Figure 10 shows contrasting illumination and mesh-

ing induced by diffuse and glossy reflection. Note the distinct mesh-
ing for each highlight. Glossy reflection is at a less oblique angle,
and thus both the highlight and meshing exhibit less distortion in
the direction of the eye.

Note that these scenes are extremely simple — application to
more complex environments is still very expensive, despite the em-
ployment of hierarchical methods. Motivated by the work of Smits
et al. [14] in hierarchical radiosity, we are currently experimenting
with importance and radiance weighting over three point transport
— preliminary results of this work are shown in Figure 12. The
given environment contains four reflectors: the broad face of each
of the three “slabs” and the top of the central cube. In addition to
the reflections seen in the slabs, note the play of light originating at
the lamp at left, reflected off the cube top, and over the upper part
of the green wall at right. Total potential transport triples over this
environment at the finest level of subdivision is just over 222 billion
— our system, under importance and radiance weighting, employs
70,995, a reduction to 3 hundred-thousandths of 1 percent.

Table 1 provides further statistics for the images. Timings are
given for a Silicon Graphics indigo workstation with a single 50
MHz R4000 processor. The image shown in Figure 12 was generated
after seven complete iterations (gathers to all interactions), and total
time just over three minutes.
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Figure 9: Illumination and Refinement

Figure 11: Eye and Offset Views Figure 12: Cube and Slabs
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6 Discussion
Recall the matrix formulation shown in Figure 2. For any n of
reasonable size, the resulting n3 matrix will be unmanageable —
we have shown, however, that for sufficient refinement then3 entries
in the matrix may be approximated to within user specified bounds
by O(n) subblocks. The gather and push/pull procedures described
in preceding sections allow manipulation and solution over this
representation. As discussed in [2], the resulting system may be
shown to converge.

Growth in transport is more accurately described asO(n+ k3),
where k is the number of input polygonal patches within the en-
vironment, as opposed to elements. The k3 term is generated by
the initial examination of all polygon triples for reflection, and is
subsumed byn as the number of elements increases. As the number
of polygons in an environment grows, however, the k3 term will
become prohibitively large. As discussed in [14] with respect to the
related problem under hierarchical radiosity, the capability to cluster
as well as refine polygons would reduce the difficulty of unneces-
sary initial interactions. Clustering is arguably the most important
open problem in the computation of global illumination.

The hierarchical approach described in this paper was derived by
writing the rendering equation in a three point transport formulation.
Another option would be to parameterize radiance by position and
direction – we believe that a similar hierarchical approach could
be employed with the method of discrete ordinates or spherical
harmonics.

Finally, we note that, similarly to other algorithms for hierar-
chical illumination [7, 14], the algorithm described in this paper
bounds estimated error over individual transport computations. As
discussed in [14], bounding estimated error over individual trans-
port does not easily or necessarily provide a rigorous bound for
overall error in the solution. An analysis and means of computing
such a bound over hierarchical illumination remains an interesting
open problem.
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Appendix: Error Analysis
Recall the error expression derived in Section 2.3:

�(�FjiSkji +�SkjiFji)

In implementation, we have divided �Skji into separate compo-
nents for each subfactor of fg . We thus have:

�+ 2

8
(�Fji

cos� �m

cos �i cos �r
+�cos� �mFji

1

cos �i cos �r
+

�sec �iFji
cos� �m

cos �r
+�sec �rFji

cos� �m

cos �i
)

In implementation, the refinement procedure of Section 3.2 takes
an additional argument, Ceps, against which the two estimates of
error in reciprocal cosine are tested.

We are left with the computation of �sec �i, �sec �r, and
�cos� �m. The variance (and associated error) in these cosine terms
over given patchesAi, Aj , Ak is determined by the set of possible
~!i, ~!r lying between the patches (we dispense with 0 notation in
this section).

Consider patchesAi, andAj (Figure 4): we enclose these patches
in spheres Si, Sj with centers ci, cj , and radii ri, rj , respectively.
For the moment we will assume that the interiors of Si and Sj do
not intersect, and thus there exists a tangent cone lying between the
spheres.

Note that this cone is a right circular cone centered on the line
joining ci and cj . Consider the nappe containing Si: it may be
regarded as a cone of direction vectors centered about the vector
ci � cj . We will call this vector cone Ci. If pi and pj are any two
points on or in Si, Sj , then the vector pi � pj lies within Ci. Ci

thus bounds the set of possible ~!i. We may characterize Ci by the
angle �i defined by its axis, ci � cj , and boundary — coneCr and
angle �r may be similarly defined overAj and Ak. If either pair of
spheres intersect, we set the corresponding � = �. We may easily
compute maxima and minima for sec �i and sec �r given Ci and
Cr, and may then compute error in estimation as (max�min)=2.

The cones Ci and Cr centered about ~!i and ~!r induce a similar
cone of variation about~!m (Figure 5). Application of basic spherical
trigonometry yields [2]:

�m � arcsinmin(
sin(�i=2) + sin(�r=2)

~!i � ~!m
; 1:0)

Given�m, determination ofmax(cos� �m), min(cos� �m), and
thus �cos� �m immediately follows.

Having computed these estimates and maxima, and incorporat-
ing the estimates for form factor computation, we may bound and
estimate error in transport as:

�+2
8

(F2
dji

max(cos� �m)max(sec �i)max(sec �r)+

�cos� �mFdjimax(sec �i)max(sec �r)+
� sec �iFdjimax(cos� �i)max(sec �r)+
� sec �rFdjimax(cos� �i)max(sec �i) )

It is this error measure that we employ in our implementation.
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