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Abstract

Radiosity methods have been shown to be an effective means
to solve the global illumination problem in Lambertian diffuse
environments. These methods approximate the radiosity integral
equation by projecting the unknown radiosity function into a set
of basis functions with limited support resulting in a set ofn
linear equations wheren is the number of discrete elements in the
scene. Classical radiosity methods required the evaluation ofn2

interaction coefficients. Efforts to reduce the number of required
coefficients without compromising error bounds have focused on
raising the order of the basis functions, meshing, accounting for
discontinuities, and on developing hierarchical approaches, which
have been shown to reduce the required interactions toO(n).

In this paper we show that the hierarchical radiosity formulation
is an instance of a more general set of methods based onwavelet
theory. This general framework offers a unified view of both
higher order element approaches to radiosity and the hierarchical
radiosity methods. After a discussion of the relevant theory, we
discuss a new set of linear time hierarchical algorithms based on
wavelets such as the multiwavelet family and a flatlet basis which
we introduce. Initial results of experimentation with these basis
sets are demonstrated and discussed.
CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism – Radiosity ; G.1.9 [Numerical
Analysis]: Integral Equations – Fredholm equations .

Additional Key Words and Phrases: global illumination, wavelets, hi-
erarchical radiosity.

1 Introduction

In computer graphics, radiosity methods have been used to solve
the global illumination problem in environments consisting en-
tirely of Lambertian (diffuse) reflectors and emitters. The solution
is a radiosity function over the domain of the surfaces in the
scene. Classical radiosity [9, 6] (CR), derived from the radia-
tive heat transfer literature, approximates the radiosity function as
piecewise constant. An energy balance argument gives rise to a
linear system. This system hasn2 coefficients calledform factors.
Heren is the number of discrete areas, orelements, over which
the radiosity function has been assumed to be constant. The form
factor describes the fraction of the energy leaving one element
and arriving at another. Typically, an iterative algorithm such as
Gauss-Seidel iteration [22] or progressive radiosity [5, 10] is used
to solve the system of linear equations for the radiosities.

An integral equation called the rendering equation was proposed
by Kajiya to model the global illumination problem [14]. He
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Figure 1: The space of projection methods for radiosity.

showed that CR is a particular approximation to this equation. By
casting the problem in this form, techniques developed for the
solution of integral equations [8] can be exploited to solve the
radiosity equation.

In particular, Heckbert [12, 13] has demonstrated that the lin-
ear system in radiosity can be derived byprojecting the radiosity
integral into a finite dimensional function space. The CR algo-
rithm results from using thespace of piecewise constant functions,
(i.e., projecting the function into a set of constant (or “box”)basis
functions). In general, a function can be projected into any finite
dimensional function space. A desirable finite dimensional space
is one that can represent the function accurately with as few terms
as possible. In his studies, Heckbert considered radiosity functions
that are piecewise linear. Zatz [25] has used Legendre polynomi-
als to arrive at solutions that are piecewise polynomial of higher
order. Other researchers have explored the use of higher order
bases in the mesh construction and reconstruction phases of the
algorithm [18] as well as discontinuity meshing [15, 13]. The use
of higher order bases, which we will refer to as galerkin radios-
ity (GR), has been shown to lower the number of basis functions
needed to obtain a particular level of accuracy, albeit at a higher
cost per basis.

A second avenue of research has attempted to lower the com-
putational complexity of solving the linear system which arises in
CR. Hanrahan et al. [11] presented a hierarchical radiosity method
(HR) modeled after recent advances in n-body algorithms. HR ex-
ploits the fact that neighboring patches in the environment often
have similar form factors to distant patches. This reasoning is
extended to form a hierarchy of patches, (i.e., a hierarchy of basis
functions) in a straightforward manner.

While the methods using higher order bases try to exploitco-
herence in the illumination function, HR tries to exploit the co-
herence in the form factor itself, more precisely, in the kernel of
the radiosity integral. In particular, HR is based on approximating
the kernel as a constant function over intervals of varying sizes.
In places that the kernel varies slowly, large intervals are used.
Where the kernel varies quickly, smaller intervals are needed.



Recently Beylkin et al. [3] made the observation that integral
operators satisfying very general smoothness conditions can be
approximated to any finite precision with only O(n) coefficients
when projected into a wavelet basis instead of the usual O(n2).
This remarkable result means that, in practice, integral equations
governed by smooth kernels lead to sparse matrices that can be
solved in linear time. Since the radiosity kernel is, in general,
a smooth function of the type required by this theorem, wavelet
methods can be used to obtain O(n) complexity radiosity algo-
rithms. We call this wavelet radiosity .

Hierarchical basis functions have been used before with finite-
element methods [24] and applied to problems such as surface
interpolation [23]. In those instances, hierarchical basis functions
were used to improve the condition number of the matrix. In
our context, the hierarchical basis functions (wavelets) are used
because many of the resulting matrix coefficients are small enough
to be ignored while still allowing for an accurate answer. In some
sense we are regarding the matrix as an image on which we are
able to perform lossy compression. Coefficients are negligible
because over many regions the kernel can be well approximated
by a low order polynomial.

The mathematical tools of wavelet analysis provide a general
framework offering a unified view of both higher order element
approaches to radiosity, and the hierarchical radiosity methods.
Figure 1 places earlier algorithms plus the new methods we inves-
tigate here into a matrix relating hierarchy versus the order of the
underlying basis. CR uses zero order polynomials, while GR uses
higher order polynomials (indicated by the arrow). The vertical
axis represents the sparseness obtained by exploiting smoothness
of some order in the kernel. HR exploits “constant” smoothness
in the kernel. Within this context, we recognize HR as a first
order wavelet. Higher order wavelets can be used that result in
an even sparser matrix. One such family of higher order wavelets
is the multiwavelet family of [1] (M2,3 in Figure 1). We will
also introduce a new family of wavelets, which we have dubbed
flatlets (F2,3 in Figure 1) that require only low order quadrature
methods while maintaining most of the benefits of other wavelet
sets.

This paper proceeds with a review of projection methods
for solving integral equations followed by a discussion of re-
cent advances concerning the solution of integral equations using
wavelets. Finally we discuss our implementation and report ex-
perimental findings. Some of the more technical details of wavelet
projections, as well as a detailed analysis of the underlying math-
ematical framework, are described in [20].

2 The Radiosity Integral Equation

If all surfaces and emitters are Lambertian diffuse, the rendering
equation can be written as,
B(s1, s2) =

E(s1, s2) + ρ(s1, s2)

∫ ∫
dt1dt2

cos θs cos θt
πr2
st

VstB(t1, t2)

(1)
where B(s1, s2) gives the radiosity at a point specified by the
surface parameters s1, s2, E the emission, and ρ the reflectivity1.
The kernel of the integral,

k(s1, s2, t1, t2) = ρ(s1, s2)
cos θs cos θt
πr2

st

Vst

is a function describing the geometric and visibility relationship
between two points in the domain; θs and θt are the angles be-
tween the surface normals and the line between s and t; rst is the

1The reflectivity, ρ, is actually a function of wavelength. Without loss of gener-
ality, we will consider only a monochromatic world for the remainder of this paper.

distance between the two points; Vst is 1 if point s is visible to
point t and 0 otherwise.

Over many large intervals, where r is large relative to the size
of the patches, the kernel is well represented by a low order poly-
nomial. Notable exceptions include the corners of the environment
where r2 goes to 0 and the kernel is singular, and shadow discon-
tinuities where the visibility switches abruptly from 0 to 1.

3 Projections

After a short review of function projections we will show how
projections can be used to find approximate solutions to integral
equations such as the radiosity equation. The ideas presented here
can be found in greater detail in [12, 25].

We begin by writing the approximation of a function B(s) in a
finite dimensional function space where all functions B(ˆ s) can be
expressed as a linear combination of n basis functions Ni(s)

B(s) ≈ B(ˆ s) =
n∑
i=1

BiNi(s)

where the Bi are scalar coefficients with respect to the chosen
bases. For example, the space of piecewise constant functions is
spanned by a basis of translated “box” functions, and the space
of piecewise linear functions is spanned by a basis of translated
“hat” functions.

To complete the approximation, we must find a way to derive
the coefficients. For this, we define an inner product of two func-
tions f (s) and g(s) as 〈f, g〉 =

∫
ds f (s)g(s). Two functions are

orthogonal iff 〈f, g〉 = 0. We then say that a function B(ˆ s) is the
orthogonal projection of B(s) into the finite dimensional function
space if 〈B −B,Ni〉 =ˆ 0 for all basis functions Ni(s).

If the original basis functions are orthonormal we can find the
coefficients of a function B(s) with respect to the basis {Ni} by
performing inner products

B(ˆ s) =
∑
i

BiNi(s) =
∑
i

〈B,Ni〉Ni(s)

In the case of bases which are not orthonormal we must use in-
ner products with the dual basis functions (see [20]) to find the
coefficients.

Using projection methods, instead of solving the integral equa-
tion (1), we solve the related integral equation2

B(ˆ s) = E(ˆ s) +
∑
i

〈∫
dt k(s, t)B(ˆ t), Ni(s)

〉
Ni(s) (2)

In words, we operate on (integrate against the kernel) the pro-
jected function B(ˆ t). After having been operated on, the resulting
function generally no longer lies in the finite dimensional function
space, so the function is reprojected against the Ni(s). B cˆ an be
obtained by solving the linear system

Bi = Ei +
∑
j

BjKij

Kij =

∫
ds

∫
dt k(s, t)Nj(t)Ni(s) (3)

To compute the integrals Kij some form of numerical quadrature
or closed form solution [21] must be employed. If the basis func-
tions are piecewise constant, these integrals are related to the well
known form factors.

2In order to simplify the presentation we will write the radiosity function as having
one variable, and the kernel function as having two variables. In the text we will
explain what needs to be done for a 3D radiosity implementation.



It is important to remember that the projected equation is only
an approximation to the original integral equation. Projections
into different finite dimensional spaces will result in different ap-
proximations with differing amounts of error and different types of
error. In general the projection error is O(hp+1) where h is the res-
olution of the grid, and p the degree of the polynomial used which
favors higher order basis functions. Higher order basis functions
also result in smoother reconstructed radiosity solutions leading
to fewer visual artifacts. However, higher order basis functions
require more work to evaluate the associated inner products, pos-
sibly offsetting potential savings.

One set of choices for basis functions is given by the family of
functions called wavelets.

4 Wavelets

Wavelet theory is a rapidly developing field that has its roots in
pure mathematics [7] and signal processing [16]. Good introduc-
tions to the topic can be found in [17, 4]. In this section we review
some wavelet theory focusing on the relevant issues for radiosity.

Wavelets form hierarchical bases which can offer alternative
bases for familiar finite dimensional function spaces. The simplest
wavelet construction is the Haar construction shown in Figure 2.
In the upper left is a set of basis functions which span all piece-
wise constant functions at resolution 8 on the interval. Using the
operators g (pairwise differencing) and h (pairwise averaging) we
can construct another basis for the same space (upper right). Four
of these functions are just like the original basis, only wider, thus
we can repeat the construction (middle right). Repeating once
more we finally have a basis for the original space of functions
consisting of the overall average φ0 and the difference functions
ψi,j from all the lower levels. The last set of functions is known
as the Haar wavelet basis. This construction is very similar to an
image pyramid that one might use for texture mapping. In such
a pyramid the image (function in our case) is represented at dif-
ferent levels of resolution by successive averaging steps. In the
Haar pyramid we only remember the overall average and all the
differences between successive levels of the pyramid.

The Haar basis is only the simplest example of an infinite family
of such constructions, however the basic principles are the same
for all wavelet bases. More formally we start with two functions
ψ(s) (sometimes called the detail function) and φ(s) (the smooth
function) defined on the unit interval s ∈ [0, 1]. Scales (or levels)
i and translates j of φ(s) and ψ(s) are expressed as

φi,j(s) = 2i/2φ(2is− j)
ψi,j(s) = 2i/2ψ(2is− j)

with j = 0, . . . , 2i − 1. According to this indexing, the function
φi,j is just like the function φi−1,j except that φi−1,j is twice
as wide, and 1/

√
2 times as tall (the wider functions are shorter

so that 〈φi,j, φi,k〉 remains constant independent of i). Similarly,
φi,j is just like the function φi,j+1 except it is translated. To
create an n = 2L dimensional function space we construct an L
level hierarchy of functions that are scales and translates of φ and
ψ (Figure 2 illustrates L = 3). We obtain the wavelet basis for
the hierarchy by choosing only the detail shapes on all levels plus
the smooth shape on the top level, ψi,j , i = 0, . . . , L − 1 and φ0.
Between levels there is the so called two-scale relationship

φi−1,j =
∑
k

hk−2jφi,k

ψi−1,j =
∑
k

gk−2jφi,k

In words the φ functions at a given level can be linearly combined
to yield φ and ψ functions at the next coarser level. This combi-
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Figure 2: Transformation of a piecewise constant basis into the
Haar wavelet basis.

nation can be expressed as a convolution with some sequences h
and g with the result subsampled by 2 (expressed by the factor 2
in the index “k− 2j” of h and g). The sequences h and g can be
thought of as a low pass filter and high pass filter respectively.

The projection of an arbitrary function B(s) into a wavelet3

basis can be formally written as

B(ˆ s) = 〈B,φ0〉φ0(s) +
∑
ij

〈B,ψi,j〉ψi,j(s) (4)

Instead of computing all the above inner products, we can find
the coefficients efficiently by exploiting the two-scale relationship.
Given the projection of some arbitrary function B(s) with respect
to the lowest level basis φL,j the wavelet coefficients can be found
using a pyramid algorithm [16]. Each stage of this algorithm takes
a vector of coefficients and convolves it with the filters h and g,
returning the smooth and detail coefficients one level up

3To simplify the discussion we are assuming that we have an orthonormal wavelet
basis. We discuss the non orthonormal case in [20].
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XformUp( vector Bφ, int i )
for( j = 0;j < 2i/2;j + +)
Bupφ [j] =

∑
k
hk−2jBφ[k];

Bupψ [j] =
∑

k
gk−2jBφ[k];

return (Bupφ , Bupψ );

The entire one dimensional pyramid transform is then stated as

PyramidUp( vector BφL,k )
for( i = L;i > 0;i−− )

(Bφi−1,k, Bψi−1,k ) = XformUp( Bφi,k
, i );

return (Bφ0, Bψi,k , i = 0, . . . , L− 1 );

If the h and g convolutions have constant width (with respect to
i) then each call to XformUp has cost linear in the length of
the array passed in. Since each successive call in PyramidUp
works on only the smooth half left by the previous call the overall
runtime to build the pyramid is O(n + n

2 + n
4 + . . . + 1) = O(n).

A similar algorithm PyramidDown reverses this process using
XformDown for successive calls

XformDown( vector Bφ, vector Bψ, int i )
for( j = 0;j < 2 ∗ 2i; j + + )
Bdownφ [j] =

∑
k
hj−2kBφ[k] +

∑
k
gj−2kBψ[k];

return Bdownφ ;

PyramidDown( Bφ0, Bψi,k , i = 0, . . . , L − 1)
for( i = 0; i < L; i + + )
Bφi+1,k = XformDown( Bφi,k, Bψi,k , i );

return BφL,k ;

A key property of wavelets essential to this work is that a suf-
ficiently smooth function B(s), when expressed in a wavelet ba-
sis (Equation 4) will have many small coefficients. By ignoring
these negligible coefficients we are left with a sparse, approximate
representation. The negligible coefficients occur because wavelet
functions have vanishing moments. We say that a function ψ(s)
has M vanishing moments if∫

dsψ(s)si = 0, i = 0, . . . ,M − 1

The Haar wavelet (Figure 2) has one vanishing moment, thus the
projection of a nearly constant function into the Haar basis will
have wavelet coefficients near 0. Similarly, if a wavelet basis
function has two vanishing moments, the projection of a linear
function will vanish. Figures 3 and 4 show examples of wavelets,
ψ, with two vanishing moments.

5 Wavelets In Higher Dimensions

Wavelet bases for functions of two or more variables are required
for radiosity. Our goal is to project the kernel, which is a four
dimensional function, into a basis set in which it has a sparse
representation.
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Figure 4: The F2 wavelet construction. F2 bases have two dif-
ferent detail shapes. Both of the detail shapes have two vanishing
moments.
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Figure 5: The 2D Pyramid Algorithm is applied to form factors
taken from the flatland radiosity environment consisting of two
parallel line segments. (Flatland [13] is radiosity in a plane). The
dot size indicates the magnitude of a given entry in the matrix.

An arbitrary function k(s, t) of two variables on a finite two
dimensional interval can be approximated by some function k(ˆ s, t)
that lies in a two variable finite dimensional function space. Given
a particular one dimensional wavelet, a 2D wavelet basis4 is made
up of the functions

φ0(s)φ0(t)

ψi,j(s)ψi,k(t)

ψi,j(s)φi,k(t)

φi,j (s)ψi,k(t)

where we only couple functions on the same scale i, where i =
0, . . . , L− 1 and j, k = 0, . . . , 2i − 1.

The 2D wavelet coefficients may be obtained from the finest
resolution coefficients BφL,j ,φL,k using a 2D PyramidUp algo-
rithm. This algorithm begins with the BφL,j ,φL,k

written in a 2D
matrix tableau. It then applies XformUp once to each row, fol-
lowed by an application of XformUp to each resulting column.
This procedure is applied recursively to the BφL−1,j ,φL−1,k quar-

4Another 2D wavelet basis could be constructed from the tensor product of a 1D
wavelet basis. The different forms of multidimensional wavelet bases are discussed
in [3, 20].



Figure 6: To illustrate the sparseness of the kernel matrix we
transform the flatland radiosity matrix from Figure 5 into the 2D
Haar basis. Many of the coefficients are small in magnitude (small
dots).

Figure 7: We transform the same matrix into the F2 basis. Notice
that even more of the coefficients are negligible now.

ter (Figure 5). The construction of a 2D PyramidDown follows
analogously from the one dimensional PyramidDown.

This construction can be extended to functions of four variables
such as the kernel in 3D radiosity k(s1, t1, s2, t2). For this case,
there are sixteen combinations of φ and ψ functions in four vari-
ables. The basis is made up of all fifteen combinations on the
same scale i which involve ψ functions. The corresponding pyra-
mid transformation functions are constructed as in the two dimen-
sional case by applying XformUp and XformDown respectively
to each dimension in turn.

For this type of multidimensional wavelet basis Beylkin et
al. [3] show that for a given error tolerance, only O(n) coefficients
need to be used to attain the prescribed error tolerance in the re-
sults of our computations. Figures 6 and 7 visualize the sparseness
of a flatland radiosity kernel when written in two wavelet bases
with one and two vanishing moments respectively.

6 Radiosity with Wavelets

To obtain an efficient radiosity algorithm, we project the kernel
by taking inner products with the wavelet basis functions. The
coefficients of the kernel with respect to the basis are given by

kφ = kφ0,φ0 =

∫
dt

∫
ds k(s, t)φ0(s)φ0(t)

kαijk = kψi,j ,ψi,k =

∫
dt

∫
ds k(s, t)ψi,j(s)ψi,k(t)

kβijk = kφi,j ,ψi,k =

∫
dt

∫
ds k(s, t)φi,j(s)ψi,k(t)

kγijk = kψi,j ,φi,k =

∫
dt

∫
ds k(s, t)ψi,j(s)φi,k(t)

Because of the vanishing moment properties of the wavelets and
the smoothness properties of the kernel, many of these terms are
nearly zero.

A projected version of the integral operator can now be derived
by projecting the kernel itself. This derivation which we only
sketch here is described in greater detail in Beylkin et al. [3].
The kα, kβ and kγ coefficients are used to represent the kernel
which has been approximated with respect to the wavelet basis.
Given this projection, after performing the necessary algebra, the
approximate operator can be written as

∫
dt k(ˆ s, t)B(t) =

Bφkφφ0(s) +
∑
ij

(
∑
k

Bαikk
α
ijk)ψi,j (s)

+
∑
ij

(
∑
k

Bβikk
β
ijk)φi,j(s) +

∑
ij

(
∑
k

Bγikk
γ
ijk)ψi,j(s)

(5)

where

Bαik = Bγik = Bψi,k
=

∫
dtψi,k(t)B(t)

Bβik = Bφi,k
=

∫
dt φi,k(t)B(t)

Bφ = Bφ0 =

∫
dt φ0(t)B(t)

6.1 The Basic Algorithm

Equation 5 suggests the following three phase algorithm to ap-
proximate the kernel operating on a radiosity function.
Step 1 Pull : Obtain the n (n = number of bases of the radiosity
function) coefficients Bα and the n coefficients Bβ of the radiosity
function. If we are initially given the coefficients BφL,j , the
2n needed coefficients can be obtained by calling a procedure
Pull which is just like PyramidUp except it returns both the
φ and ψ coefficients. This step transforms n coefficients into 2n



coefficients. A 1D Pull would then be

Pull( vector BφL,k
)

for( i = L;i > 0;i−− )
(Bφi−1,k, Bψi−1,k ) = XformUp( Bφi,k , i );

return (Bφi,k, Bψi,k , i = 0, . . . , L − 1 ) ;

Step 2 Gather : Let the projected kernel operate on the projected
radiosity function. This means that we sum over the index k, and is
equivalent to a matrix multiply. Because of the vanishing moments
of the wavelet functions most of the n2 kernel coefficients will
be near zero and may be ignored if the action of the kernel is
desired to finite precision. The procedure Gather results in 2n
coefficients Gφi,j and Gψi,j that represent the resultant radiosity
function as a combination of φi,j(s) and ψi,j(s).
Step 3 Push: Reconstruction of the radiosity function using the
2n functions φi,j(s) and ψi,j(s) is done with the procedure Push
which is similar to PyramidDown but takes as arguments both
the φ and ψ coefficients. A 1D Push would then be

Push( Bφi,k
, Bψi,k

, i = 0, . . . , L− 1)
for( i = 0; i < L; i + + )
Bφi+1,k += XformDown( Bφi,k, Bψi,k , i );

return BφL,k ;

Wrapping this projected operator within a Jacobi iteration loop
results in the following algorithm

(kα,kβ,kγ) = ProjectKernel();
BφL,k = EφL,k;
while( !converged )
G = 0;
(Bφi,k

, Bψi,k
) = Pull( BφL,k

);

(Gφi,j, Gψi,j) = Gather( Bφi,k, Bψi,k, k
α, kβ, kγ );

GφL,k
= Push( Gφi,j, Gψi,j );

BφL,k = GφL,k +EφL,k;
Display();

The push and pull can be done in O(n) (linear in the number of
elements) steps. The gather step (this is a complete gather sweep
which updates all of the entries) can be done in O(m) time where
m is the number of terms in the kernel expansion (matrix) that
are significant. We want m to be as small as possible. Wavelet
bases will lead to m = O(n) where the constant factor in O(n)
decreases with the number of vanishing moments.

What remains is to project the kernel into the wavelet basis,
which may be done as follows

ProjectKernel()
kφL,j ,φL,k= Quadrature( k, φL,j, φL,k );

(kα, kβ, kγ ) = PyramidUp( kφL,j ,φL,k);
where( (kα, kβ, kγ ) < ε )

(kα, kβ, kγ ) = 0 ;

6.2 The Top Down Approach

Unfortunately, this bottom up ProjectKernel is an expensive
implementation requiring quadratic time and space. The costs can
be dramatically cut by using an oracle which predicts which m of
the n2 coefficients of the projected kernel are significant. Then,
these m values are computed directly by quadrature or symbolic
integration.

Assuming that the oracle can estimate the smoothness of the
kernel for a given region (vis-a-vis a given number of van-
ishing moments), an efficient top down recursive version of
ProjectKernel can be written as follows

ProjectKernel( i, patch p, patch q )
smooth = AskOracle( p, q );
if( smooth ) return;
else

(kαi,j(p),k(q), k
β
i,j(p),k(q), k

γ
i,j(p),k(q))

= Quadrature( k, p, q );
if( i == L-1 ) return;
else
ProjectKernel( i+1, left(p), left(q) );
ProjectKernel( i+1, left(p), right(q) );
ProjectKernel( i+1, right(p), left(q) );
ProjectKernel( i+1, right(p), right(q) );

If the oracle finds the region under consideration sufficiently
smooth no more recursive calls need be executed, since the coef-
ficients at lower levels will be insignificant by assumption. The
function Quadrature() computes the projection of the kernel
function onto the basis functions at the given level.

6.3 3D Radiosity

In 3D radiosity B is a function of two variables so in the main
program we use a 2D Pull and a 2D Push respectively. k is a
function of four variables so in the bottom up ProjectKernel
we use a 4D PyramidUp function. In the top down approach
to ProjectKernel there are fifteen not three quadratures and
sixteen recursive calls for all combinations of four children of p
and q.

7 Implementation

The top down algorithm described above has been implemented by
extending the implementation of hierarchical radiosity described
in Hanrahan et al. [11].

7.1 Choice of Basis

Two families of wavelets have been explored, multiwavelets [1]
and a family of wavelets that we call flatlets. Each of these fam-
ilies have members with any number of vanishing moments.

The construction of MM (multiwavelet withM vanishing mo-
ments) begins with M smooth functions which are the first M
Legendre Polynomials, φm(s) = Lm(s), and M detail functions
ψm(s) that are piecewise polynomials of degree M − 1, and have
M vanishing moments. A hierarchy is then constructed from
these shapes. M1 is the Haar basis, however, for M greater than
1, MM is technically speaking not a true wavelet since it begins
with a collection of φ and ψ functions instead of a single pair.

Multiwavelets form an orthonormal basis. Figure 3 shows the
basis functions for the M2 hierarchy. The two-scale relationship
for M2 is expressed concisely as
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Using this relationship the push and pull operations can be com-
puted using a binary tree, instead of as a subsampled vector convo-
lution. A node stores the four coefficients of the functions φ1

i−1,j ,
φ2
i−1,j , ψ

1
i−1,j , ψ

2
i−1,j . During a pull, a node computes the val-

ues of its coefficients as a linear combination of the φ1
i,2j , φ

2
i,2j

coefficients obtained from its left child, and the φ1
i,2j+1, φ2

i,2j+1 co-
efficients obtained from its right child. To represent the radiosity
function over a patch we need a 2D M2 basis for which we use



a quad-tree where each node stores sixteen coefficients. During
a pull, a node computes its coefficients as a linear combination
of the sixteen φφ coefficients from its children (four from each
child).

The flatlet basis FM is made up entirely of piecewise constant
functions. The φm are M adjacent box functions, and the ψm are
M piecewise constant functions that haveM vanishing moments.
Figure 4 shows the F2 hierarchy.

For F2, the two-scale relationship is given by
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The top two rows of the matrix in the above equation are chosen
to give us box functions twice as wide. The bottom two rows
are chosen to be orthogonal to constant and linear variation, (the
vectors [1, 1, 1, 1], [0, 1, 2, 3])5. For a discussion of a similar con-
struction see [2].

Both flatlets and multiwavelets can be constructed to have any
number of vanishing moments to increase the sparseness of the
integral operator representation. For both bases, the case M = 1
reduces to the Haar basis. For M > 1 multiwavelets offer the
benefits of projecting into a higher order space, resulting in in-
creased convergence rates and smoother basis functions to repre-
sent the answer. These benefits come at the expense of higher
order quadratures necessary for the inner products. Flatlets for
M > 1 also offer accelerated convergence while the quadratures
remain equivalent to form factor computations for which there ex-
its a large body of literature and code, and for which some closed
form solutions are known. The final answer is still represented as
a piecewise constant function, albeit at the finest resolution φL,j .
Since the degree of the basis functions does not go up in the flatlet
case the width of support needs to be increased as M increases.

With multiwavelets and flatlets there is also a cost incurred by
increasing the number of vanishing moments. LargerM will result
in h and g filters with wider support. Thus any non-smoothness in
k(s, t), such as a shadow discontinuity, will fall under the support
of more basis functions. This increases the number of significant
terms in the integral operator.

5A technical detail concerns the fact that flatlets for M > 1 are not orthonormal
and thus require the dual basis functions to compute PyramidUp (see [20]).

Figure 8: Two different oracles and the interaction patterns they
generate.

7.2 Pull, Push and Gather

Both multiwavelets and flatlets are instances of tree wavelets. A
tree wavelet has the property that the convolution sequences h
and g for two neighboring elements do not overlap. This property
allows us to organize all computations along a tree which does
not need to have uniform depth. Tree wavelets also allow for an-
other simplification. Since all necessary coefficients reside in the
immediate children of a node we can use the two-scale relation-
ship to store only the φφ coefficients and need not represent the
φψ, ψφ, and ψψ coefficients explicitly. With this simplification
ProjectKernel is implemented as follows

ProjectKernel( i, patch p, patch q )
ParentLevelsmooth = AskOracle( p, q );
if( ParentLevelsmooth || i == L )
kφ,φ = Quadrature( k, p, q );
CreateLink( kφ,φ, p, q );

else
ProjectKernel( i+1, left(p), left(q) );
ProjectKernel( i+1, left(p), right(q) );
ProjectKernel( i+1, right(p), left(q) );
ProjectKernel( i+1, right(p), right(q) );

In our implementation of radiosity using the MM and FM bases,
the radiosity function over each polygon is represented by Bφφ
coefficients that are stored in a quad-tree. Each node holds M 2

Bφφ coefficients. Pulling and pushing are done in the quad-tree as
in [11] except that for different bases, we use different two-scale
relationships. The kernel is represented by its kφφφφ coefficients
that are stored on links created between nodes of different poly-
gons’ quad-trees. Each such link caries M 4 interaction terms. For
the FM bases the interaction terms are still form factors, but for
MM the coefficients on the links represent higher order inter-
actions which require quadrature computations of the appropriate
order. Gathering is done by moving B values across the links,
weighted by the k values on the link. In this context, HR can be
viewed as wavelet radiosity using the Haar basis.

7.3 Oracle

The oracle must decide whether the kernel is sufficiently smooth
over two patches in the environment i.e., resembles a polynomial
of degree M − 1 or less. If the kernel is smooth, all ψ terms
will (sufficiently) vanish and thus any work to evaluate the lower
interaction terms can be avoided.

The most accurate approach to measure the kernel smoothness
is to directly evaluate the integrals of the kernel against the ψ
on this and all lower levels and verify that they are below the
required threshold. This is computationally too expensive and we
approximate this computation in the following way. The kernel
is sampled at the points required by a Gauss-Legendre quadra-
ture rule of the appropriate order and an interpolating polynomial
of degree M − 1 is constructed using Neville’ s algorithm [22].
Given this interpolating polynomial kP we compute the L1 error∫
|kP − k| with a quadrature rule which places sample points in-

between the previously chosen points. If the value of this integral
is small we conclude that our current level of (smooth) approx-
imation matches the kernel function well and the AskOracle
function returns True. Note that the sample points for the inter-
polating polynomial are chosen so that they can be used directly in
the computation of the interaction link values. If the AskOracle
function returns False these samples are discarded. A less costly
approach could use geometric information, such as the size, ori-
entation, and distance between two patches. In effect this was
done in the original HR implementation. However for the FM
and MM , M > 1 bases it is not immediately clear what the
corresponding geometric reasoning would be.



It is important to realize that any such implementation of an
oracle will introduce errors due to its approximate nature. If the
oracle is not stringent enough, and necessary terms are neglected,
artifacts will appear in the image. Figure 8 shows two differ-
ent oracles and the interactions they force. Two successive levels
of interactions are shown (top to bottom). On the left is an or-
acle allowing patches close to the singularity (where the kernel
varies rapidly) to be linked (meaning no further subdivision will
be done). For this oracle the interaction patterns separate on the
lower level. On the right is a more stringent oracle which does not
allow singular interactions until patches have become very small.
As a result we do not see the separation.

As in [11] we use brightness refinement which means that the
stringency of the oracle is weighted by the brightness of the in-
volved patches. Also as in [11] a fast partial visibility test is
performed by using a constant number of jittered rays. If two
patches are partially occluded and there is sufficient energy being
transferred between the two patches the oracle returns False.

7.4 Quadrature

If the oracle returns True, numerical integrations must be per-
formed to compute the kφφφφ terms associated with the link to be
created. Our implementation uses Gauss-Legendre quadrature [22]
for this purpose. A Gauss-Legendre quadrature rule provides an
accurate integration for polynomials up to order 2p − 1, where p
is the number of sample points. The order of the quadrature and
the related number of sample points required depends on the sum
of the order of the wavelet bases, and the assumed order of the
kernel itself.

For the projection of the kernel against a flatlet basis, a two
point rule is used for each constant section of the basis function.
In the case of multiwavelets MM , M > 1, M points are chosen
along each coordinate axis since we need to have a high enough
order of integration to account for the polynomial variance in
the kernel and the polynomial basis functions themselves. For
example, for M = 3 we compute coefficients when the kernel
varies approximately up to 2nd by projecting onto basis functions
up to 2nd order. Thus the integrand is approximately 4th order,
and we can use a three point Gauss rule.

The number of integrals which need to be computed for a link
is M 4, however for all these integrals only a total of M 4 samples
of the kernel function are required. Using precomputed weights,
these samples are combined to give all the desired integrals.

We treat visibility following [11] by casting a constant number
of jittered rays between two patches to estimate the fraction of
visibility. This is then used to attenuate the quantity returned by
the Gauss-Legendre quadrature. This technique relies on the fact
that we always subdivide in the vicinity of a shadow discontinuity
limiting errors due to the non-smooth nature of the kernel to a
small region.

When the two patches that are linked up are close to the singu-
larity in k, quadratures will encounter numerical difficulties if they
are not properly adapted to the singularity. In particular a Gauss-
Legendre rule will produce large errors and an adapted quadrature
rule is required. This phenomenon is not unique to wavelet ra-
diosity but applies to all GR methods. Special Gauss rules can be
designed for the particular singularity found in the radiosity ker-
nel. Zatz [25] uses such custom rules and notes the need for an
automatic decision procedure as to when to switch the type of in-
tegration. In our implementation of flatlets, we use a closed form
solution for the form factor [21] whenever the patches border on
the singularity. While this computation is expensive, it only needs
to be invoked in a small fraction of interaction computations and
contributes little to overall runtime. For multiwavelets we have no
such closed form available. In this case the oracle forces subdivi-
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Figure 9: Relative L1 error as a function of the number of interac-
tion links for the haar basis with h = 1
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The test configuration is depicted in the upper right corner.
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Figure 10: Relative L1 error as a function of the number of
interactions for the wavelet bases M1, M2, M3, and M4 (top
to bottom) using the same test configuration as in Figure 9. Here
h = 1

32 .

sion to small enough patches at the singularity that the resulting
errors contribute very little to the overall error. Alternative con-
structions for singular transports are discussed in [19].

8 Experimental Results

In this section we present findings that compare how radiosity
behaves using different wavelet bases. We give results from the
analysis of a simple 3D configuration, for which we have an an-
alytic solution against which to check our results. We finish with
an image of a full environment.

One test case used the configuration depicted in the inset in
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Figure 11: Relative L1 error as a function of work.

Figure 12: Computed image of perpendicular emitter and receiver.
for the Haar basis (left), and F2 basis (right) using same amount
of work. Note that we have not performed any post processing
such as Gouraud shading.

Figure 9. A pure emitter of side length 1 is placed 0.1 units above
a pure receiver of side length two. For this particular configuration
the radiosity on the receiver is given by the differential area to
finite area form factor at every point. Figure 9 shows the behavior
of the relative L1 error for the Haar basis as a function of the
number of interactions for various grid sizes h. The far point on
each of the lines corresponds to a full matrix solution. Note in
particular that the final accuracy is reached well before all matrix
elements are computed. Plots for higher order basis functions
exhibit the same overall shape but with steeper slopes and overall
lesser error. Figure 10 shows the behavior of the MM bases for
M = 1, . . . , 4 and h = 1

32 . The ratio of successive slopes (as
fitted to the points) is almost precisely 1 : 2 : 3 : 4, as one would
expect from the order of basis functions employed. For both plots
we have depicted error as a function of number of interactions.
However a user experiences error as a function of work which is
more accurately measured by the number of kernel evaluations.
Since the amount of work increases for higher order methods it
is not clear a priori whether a higher order method will always
yield better results in a shorter time. Figure 11 shows error as a
function of kernel evaluations for the same data as that used in
Figure 10. The plot for M = 1 is translated with respect to all
others since we always use at least a two point quadrature rule
even if the basis functions are constant. The plot shows that if
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Figure 13: Heightfield error plots for perpendicular emitter and
receiver.

Figure 14: Architectural scene computed with the M2 basis and
rendered directly from the basis functions.

sufficient accuracy is required higher order basis functions achieve
lower error for the same amount of work.

We have also examined the behavior of our methods near the
singularity of an environment consisting of perpendicular poly-
gons (Figure 12). The emitter was chosen to be half as wide as
the receiver to create more variation in the radiosity function. The
grid size was set to 1

32 . The upper left plot in Figure 13 shows the
exact solution plotted as a height field over the receiver. On the
top right is a plot of the difference between exact solution and the
computed solution for the Haar basis. On the bottom are similar
error surfaces for the F2 and F3 bases (left and right respectively).
The amount of work was approximately constant (8000 interac-
tions) for all three solutions. The graphs show clearly the lesser
and smoother error for the F2 and F3 bases demonstrating the
effectiveness of bases with more vanishing moments. This is also
illustrated by the rendered images in Figure 12.

The algorithm has also been run on a more complex environ-



ment (Figure 14). This picture, as well as Figure 12, does not
use any postprocessing such as Gouraud shading. Instead the sur-
face brightness is computed directly from the basis functions and
associated coefficients.

9 Conclusion and Future Work

In this paper we have presented the basic theory of projections of
integral operators into hierarchical bases, and laid out the theoreti-
cal foundation of a new set of techniques involving wavelets. With
this in hand, we introduced a new set of linear time algorithms
we have called wavelet radiosity, and shown that the hierarchical
radiosity described by Hanrahan et al. was an instance of a first
order wavelet approach.

We have introduced a new family of wavelets, dubbed flatlets
and also experimented with a second family of wavelets, multi-
wavelets. Both lead to efficient algorithms. Future work includes
examining various wavelet bases which may have better proper-
ties than the multiwavelets and flatlets. For example the Coiflet
functions of [7, 3] allow for fast one point quadrature methods.
The tree wavelets that we implemented do not enforce any kind
of continuity at element boundaries, possibly leading to blocky
artifacts. Spline wavelets [4] might provide a basis which would
alleviate this.

While our initial implementation was limited to quadrilateral
polygons there is nothing in the underlying algorithms that pre-
vents the use of any surface whose parameter domain is rectilinear,
such as for example bicubic patches. The only change involves the
reparameterization (change of variable) in the coupling integrals.
It would be very desirable to design bases which work with trian-
gular domains since triangles are a common primitive in meshing
algorithms.

There are still fundamental questions that have yet to be ad-
dressed. We would like to gain a better understanding of how
wavelet expansions interact with the visibility term in the kernel.
It is also important to find methods that remain efficient when the
environment consists of a large number of small polygons.

Acknowledgements

The research reported here was partially supported by Apple, Sili-
con Graphics Computer Systems, and the National Science Foun-
dation (CCR 9207966). We would like to thank S. V. Krishnan
for his useful comments. We would also like to thank Ju-sung
Lee, Jonathan McAllister, and Michael Neufeld for creating the
model of the room.

References

[1] Alpert, B. A Class of Bases in L2 for the Sparse Representation
of Integral Operators. SIAM Journal on Mathematical Analysis 24, 1
(Jan 1993).

[2] Alpert, B., Beylkin, G., Coifman, R., and Rokhlin, V.

Wavelet-like Bases for the Fast Solution of Second-kind Integral
Equations. SIAM Journal on Scientific Computing 14, 1 (Jan 1993).

[3] Beylkin, G., Coifman, R., and Rokhlin, V. Fast Wavelet
Transforms and Numerical Algorithms I. Communications on Pure
and Applied Mathematics 44 (1991), 141–183.

[4] Chui, C. K. An Introduction to Wavelets, vol. 1 of Wavelet Analysis
and its Applications. Academic Press Inc., 1992.

[5] Cohen, M., Chen, S. E., Wallace, J. R., and Greenberg,

D. P. A Progressive Refinement Approach to Fast Radiosity Image
Generation. Computer Graphics 22, 4 (August 1988), 75–84.

[6] Cohen, M. F., and Greenberg, D. P. The Hemi-Cube: A
Radiosity Solution for Complex Environments. Computer Graphics
19, 3 (July 1985), 31–40.

[7] Daubechies, I. Ten Lectures on Wavelets, vol. 61 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, 1992.

[8] Delves, L. M., and Mohamed, J. L. Computational Methods
for Integral Equations. Cambridge University Press, 1985.

[9] Goral, C. M., Torrance, K. E., Greenberg, D. P., and

Battaile, B. Modelling the Interaction of Light between Diffuse
Surfaces. Computer Graphics 18, 3 (July 1984), 212–222.

[10] Gortler, S. J., Cohen, M. F., and Slusallek, P. Radios-
ity and Relaxation Methods; Progressive Refinement is Southwell
Relaxation. Tech. Rep. CS-TR-408-93, Department of Computer
Science, Princeton University, February 1993.

[11] Hanrahan, P., Salzman, D., and Aupperle, L. A Rapid
Hierarchical Radiosity Algorithm. Computer Graphics 25, 4 (July
1991), 197–206.

[12] Heckbert, P. S. Simulating Global Illumination Using Adaptive
Meshing. PhD thesis, University of California at Berkeley, January
1991.

[13] Heckbert, P. S. Radiosity in Flatland. Computer Graphics Forum
2, 3 (1992), 181–192.

[14] Kajiya, J. T. The Rendering Equation. Computer Graphics 20, 4
(1986), 143–150.

[15] Lischinski, D., Tampieri, F., and Greenberg, D. P. A Dis-
continuity Meshing Algorithm for Accurate Radiosity. IEEE CG&A
12, 4 (July 1992).

[16] Mallat, S. G. A Theory for Multiresolution Signal Decompo-
sition: The Wavelet Representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 11 (July 1989), 674–693.

[17] Press, W., Teukolski, S., Vetterling, W., and Flan-

nery, B. Numerical Recipies in C, The Art of Scientific Computing,
2 ed. Cambridge University Press, 1992.

[18] Salesin, D., Lischinski, D., and DeRose, T. Reconstructing
Illumination Functions with Selected Discontinuities. Third Euro-
graphics Workshop on Rendering (1992), 99–112.
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