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Abstract

The radiosity method is the most popular algorithm for simulating interre
ection of

light between di�use surfaces. Most existing radiosity algorithms employ simple meshes

and piecewise constant approximations, thereby constraining the radiosity function to

be constant across each polygonal element. Much more accurate simulations are possi-

ble if linear, quadratic, or higher degree approximations are used. In order to realize the

potential accuracy of higher-degree approximations, however, it is necessary for the ra-

diosity mesh to resolve discontinuities such as shadow edges in the radiosity function. A

discontinuity meshing algorithm is presented that places mesh boundaries directly along

discontinuities. Such algorithms o�er the potential of faster, more accurate simulations.

Results are shown for three-dimensional scenes.

Keywords: global illumination, di�use interre
ection, adaptive mesh, shadow.

1 Introduction

One of the most challenging tasks of image synthesis in computer graphics is the accurate

and e�cient simulation of global illumination e�ects: the illumination of surfaces in a scene

by other surfaces. Early rendering algorithms used a local illuminationmodel, assuming that

surfaces could be shaded independently, typically using a �nite set of point light sources.

Global illumination models, on the other hand, recognize the true interdependency of the

shading problem: the radiance of a surface point is determined by the radiance of all the

surfaces visible from that point.

Global illumination simulation is relevant to a number of scienti�c and engineering �elds:

lighting design in architecture, shape-from-shading in computer vision, neutron transport

in physics, and thermal radiation in mechanical engineering.

The visual artifacts of global illumination are familiar in the everyday world, even if

they are sometimes subtle: we see penumbras or soft shadows from area light sources, color

bleeding between surfaces, and indirect lighting.

�From Third Eurographics Workshop on Rendering, Bristol, UK, May 1992, pp. 203-216.

1



2 Discontinuity Meshing for Radiosity

In this work, we restrict our attention to di�use materials: those with a matte surface

that appears equally bright from all directions. More general global illumination algorithms

simulate specular, or glossy, materials and participating media such as fog and other translu-

cent media. Because of our assumptions, light radiance is a function of wavelength and the

two surface parameters only.

1.1 Previous Work

Existing techniques for simulating global illumination generally fall into two classes: ray

tracing methods and radiosity methods. In general, ray tracing is best at simulating specular

surfaces and radiosity is best at simulating di�use surfaces.

Ray tracing simulates light transport by tracing the paths of photons through the scene

in one of two directions: either from the lights into the scene or from the eye into the scene.

With the addition of Monte Carlo techniques, it is possible to simulate di�use interre
ection

[Kajiya86]. This can be done e�ciently by caching the slowly-varying di�use component of

radiance [Ward et al. 88].

1.1.1 Radiosity Algorithms

Radiosity methods have their roots in the simulation of thermal radiation in mechanical

engineering [Sparrow63], and were extended and optimized for the simulation of complex

scenes in computer graphics [Cohen-Greenberg85,Cohen et al. 88]. The radiosity method

subdivides the scene into elements (subsurfaces) and creates a system of equations whose

solution is the radiosity (the sum of emitted and re
ected radiance, integrated over a hemi-

sphere) of each element.

Early radiosity papers devoted little attention to meshing, the subdivision of surfaces

into elements. They often performed meshing in a very simple manner: using a grid of

congruent rectangular or triangular elements and approximating the true radiosity function

with a function that is constant over each element. We call such an approximation a uniform

mesh with constant elements. Though Gouraud shading is typically used for display, linear

variation in radiosity is not taken into account during form factor calculation, with a few

exceptions [Max-Allison92,Heckbert-Winget91]. The true radiosity function is not constant

across each element, of course [Tampieri-Lischinski91]. Meshes with constant elements result

in jaggy shadow boundaries and other artifacts.

Better meshes can be created by user intervention, a posteriori methods, and a priori

methods.

A posteriori meshing constructs a �rst approximation using a coarse, uniform mesh,

and then re�nes the mesh where the gradient appears to be large. Re�nement can be done

using quadtree subdivision [Cohen et al. 86]. Such methods help signi�cantly, but they can

miss small features (shadows of small objects), and they exhibit jagged shadow edges unless

subdivision is extremely �ne.

A priori meshing employs object-space techniques to predict, before solution, where

shadow edges and other discontinuities will occur. A mesh is then constructed accordingly,

and a solution found. Campbell's a priori meshing split the scene with planes through light

source points and edges of occluding polygons, thereby approximating some shadow edges

[Campbell-Fussell90]. A later improvement by Campbell found the discontinuities along the

boundaries of the penumbra [Campbell91]. Baum split surfaces where they intersected or

touched to resolve the most severe discontinuities [Baum et al. 91]. Rigorous meshing of

2-D scenes has also been explored [Heckbert91,Heckbert92,Lischinski et al. 91].
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Another meshing improvement is to vary the mesh resolution according to the range of

the interaction: a �ne mesh is needed for nearby elements but a coarse mesh su�ces for

distant elements [Hanrahan et al. 91]. Hanrahan found, surprisingly, that many radiosity

algorithms waste much of their time computing tiny form factors. He found that closer

attention to the numerics of the simulation can sometimes result in great speedups.

1.1.2 Shadow Algorithms

Many of the techniques employed by a priori meshing were pioneered in object space shadow

algorithms. The simplest shadow algorithms simulate only point light sources, computing

the shadowed and unshadowed polygons using \cookie cutter" algorithms [Atherton et al.

78], or binary space partitioning (BSP) trees [Chin-Feiner90]. Nishita went further, comput-

ing penumbra boundaries from area light sources [Nishita-Nakamae83], thereby producing

some amazingly realistic pictures without simulating interre
ection. Chin has recently done

the same using BSP trees [Chin-Feiner92].

1.2 Motivation

Current radiosity algorithms work well for some scenes: the progressive radiosity algorithm

[Cohen et al. 88] is relatively fast and its artifacts are often imperceptible. Sometimes,

however, existing algorithms are very slow, they exhibit objectionable artifacts, and they

are inaccurate.

The computational requirements for radiosity on complex scenes can be prohibitive: a

scene of about 5,000 polygons (broken into 1,000,000 elements) requires about 6 CPU-days

on a fast (6 mega
op) computer using some of the best existing software [Baum et al.

91]. By comparison, Ward's ray tracing algorithm [Ward et al. 88] renders the same scene

in about 2 days on a comparable machine. The relative errors of the two methods are

not known, so this comparison is approximate. The fact that a di�use-speci�c radiosity

algorithm appears to be slower than a more general ray tracing algorithm suggests that

faster radiosity algorithms must exist, however.

The artifacts of radiosity algorithms are sometimes annoying: small or distant light

sources such as the Sun cause blocky shadow edges; and animation with moving objects

su�ers from severe popping as meshes change.

The �nal motivation for research on improved radiosity algorithms is the increasing

importance of \physically-based" modeling and rendering: for many applications, pretty

pictures are less important than accurate simulations. For simulations in mechanical engi-

neering, for example, the primary output of a radiosity program is not a picture but a set

of numbers or functions.

Hanrahan's results suggest that current radiosity methods may be much more brute

force than necessary. He achieved great speedups for some scenes by improving the form

factor computation algorithm; perhaps similar speedups are possible by better adaptive

meshing.

1.3 Lessons from Two Dimensions

A thorough study of radiosity in a two-dimensional \
atland" world was made in order to

better understand radiosity functions and the radiosity methods that approximate them

[Heckbert91,Heckbert92].

Radiosity functions were shown to have discontinuities of value (degree 0 discontinuities)

at touching surfaces, intersections, creases, and along shadow edges from point light sources;
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Figure 1: Degree 1 and degree 0 disconti-

nuities caused by linear light source at top

(edge p1-p2) illuminating an occluded edge

at bottom (edge a-b). Degree 1 discontinu-

ities delimit the penumbras at a2', a1', b2',

and b1'. Degree 0 discontinuity at the hard

shadow edge c1'.

Figure 2: Log-log plot of element size

vs. error for six di�erent solution methods.

Note that discontinuity meshing with linear

elements is far more accurate than the other

methods, and that Gouraud elements are lit-

tle better than constant elements.

and �rst derivative (degree 1) discontinuities along shadow edges from linear light sources

(�gure 1). Radiosity algorithms employing uniform meshes were found to be inaccurate be-

cause they failed to resolve these discontinuities; their meshes prevented the discontinuities

from being represented by the approximation.

An a priori adaptive meshing technique called discontinuity meshing was introduced

that predicts the locations of discontinuities and places mesh boundaries at those points.

Figure 2 shows a plot of error versus element size in a simple test scene for six di�erent

solution algorithms, formed by taking combinations of one of the two meshing techniques,

uniform meshing or discontinuity meshing, and one of three element types.

The three element types used were constant elements (box basis), linear elements (hat

basis), and what we call Gouraud elements. Gouraud elements are constant elements for

form factor calculation, followed by linear interpolation for the `display' step. We call them

Gouraud elements by analogy with the computer graphics shading technique. Gouraud

elements are the most commonly used approximation technique in existing radiosity algo-

rithms. The error estimate here is an objective one: the square root of the integral of the

squared di�erence between the approximation and a reference solution (obtained using an

extremely �ne mesh). Qualitatively similar plots result for other scenes in which occlusion

occurs.

The results show that constant and Gouraud elements have nearly the same (low) ac-

curacy. Convergence with decreasing element size is faster with linear elements than with
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constant or Gouraud elements, and convergence rate is highly dependent on discontinuities.

Without discontinuity meshing, solution with any of the three element types converges

slowly, but with discontinuity meshing, convergence can be relatively fast. Discontinuity

meshing with linear elements gives results over 10 times more accurate on �ne meshes, in

these experiments.

The use of constant elements during problem formulation and solution followed by

Gouraud interpolation for display gives results that are objectively no more accurate than

the use of constant elements throughout (though they may look better).

Timing tests showed that, for these scenes, discontinuity meshing and linear elements

are cost-e�ective; they gave the best accuracy for a given amount of total CPU time, and

the fastest results at a given accuracy. In one test run, discontinuity meshing with linear

elements gave results of the same quality as uniform meshing using about 1/60th the total

time and 1/60th the memory.

The principal lesson of the 2-D research is that discontinuity meshing and higher

degree elements can increase the accuracy and/or speed of radiosity algorithms,

but the techniques should be used together. Neither technique, by itself, gives sig-

ni�cantly better results than standard methods.

The use of higher degree elements in 3-D is straightforward, if no discontinuity meshing

is done. In fact, it is possible to compute the form factors for linear element radiosity using

a variant of the hemicube algorithm [Max-Allison92]. Since discontinuity meshing seems

much more challenging than the use of higher degree elements, we devote the bulk of our

attention to discontinuity meshing.

2 Discontinuity Meshing in 3-D

Discontinuity meshing is an approach to meshing that attempts to accurately resolve the

most signi�cant discontinuities in the solution by optimal positioning of element boundaries.

For the two-dimensional elements of 3-D radiosity, element boundaries are curves.

2.1 Visibility

Discontinuities in the radiosity solution are caused by changes in visibility called events.

Changes in visibility occur along critical surfaces, and potential discontinuities occur along

critical curves where these surfaces intersect the faces (polygons) of the scene. For a scene

of polygons, there are two types of events: vertex-edge (VE) events and edge-edge-edge

(EEE) events [Gigus-Malik90].

VE events result from an inter-visible vertex v and edge e. The critical surface for this

event is a subset of the plane containing the vertex and the edge. More precisely, it is the

set of points collinear with vertex v and a point p of edge e, that are not between v and p.

We call this surface a wedge (�gure 3). The critical curves caused by a VE event are line

segments; they are the points of the intersection of the wedge with the faces of the scene

that are visible to v and p.

EEE events result from three inter-visible, skew edges (�gure 4). The critical surface is

the set of points simultaneously collinear with one point from each edge but not between

any two of these three points. This surface is a subset of a quadric [Gigus-Malik90]. The

critical curves caused by an EEE event are conic segments; they are the face points on the

critical surface that are visible to the three edge points on the line.
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Figure 3: The wedge de�ned by vertex v

and edge e.

Figure 4: EEE event caused by three skew

edges at right creates a quadric critical sur-

face and a conic critical curve on face at

left.
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Figure 5: Discontinuities caused by a tri-

angular emitter, rectangular occluder, and

receiver in parallel planes (after [Nishita-

Nakamae83]).

Figure 6: Discontinuities from a trian-

gular emitter and rectangular occluder, for

three di�erent rotations of the emitter. When

edges of emitter and occluder become copla-

nar, two degree 2 discontinuity curves coin-

cide, yielding a degree 1 discontinuity.

2.2 Discontinuities

Touching or intersecting surfaces usually yield degree 0 discontinuities along their common

curve. Shadow edges from point, linear, and area light sources are in general of degree 0, 1,

and 2, respectively, but when two discontinuities coincide, the degree of the discontinuity

can decrease [Heckbert91]. The lowest degree discontinuities generally cause the greatest

error, if not resolved by an approximation.

Many of the characteristics of VE discontinuities are shown in �gure 5. A top view

of these discontinuities is shown in �gure 6. When rotation of the occluder in its plane

causes an edge of the emitter and an edge of the occluder to become coplanar, two degree

2 discontinuity curves coincide, yielding a degree 1 discontinuity.1

1This can be observed empirically by holding a sti� piece of paper horizontally below a rectangular lamp

�xture and a few inches above a white tabletop. Rotate the piece of paper in its plane, and observe the
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The number of VE critical surfaces is O(m2) worst case, and the number of EEE critical

surfaces is O(m3) worst case, for a scene of m faces. These give the upper bounds of O(m3)

VE critical curves and O(m4) EEE critical curves, respectively, since each critical surface

can intersect at most m faces. These may not be least upper bounds. They are pessimistic

for practical scenes, which often have parallel (and therefore coplanar) edges leading to

many coincident critical surfaces and a far lower number of critical curves.

The vast majority of discontinuities are imperceptible. The most signi�cant discon-

tinuities are what we perceive as shadows; the least signi�cant ones result from changes

in visibility with respect to non-emitting surfaces. Except in special circumstances (e.g.

moonshadows), shadows from secondary light sources are negligible.

Earlier adaptive meshing schemes have resolved some of the discontinuities in radiosity

solutions. Baum's system resolved the degree 0 discontinuities from touching or inter-

secting surfaces, but not degree 0 discontinuities from point light sources, or degree 1 or 2

discontinuities. As mentioned previously, the meshes in [Campbell-Fussell90] approximately

resolved some discontinuities. Campbell's more recent algorithm, [Campbell91], resolves the

discontinuities along the boundaries of the penumbra, but not the discontinuities within the

penumbra.

2.3 Discontinuity Meshing Algorithm

Discontinuity meshing can be done in a three phase process: �rst, critical curves are found

and stored with the faces on which they lie, then a mesh that follows the critical lines

is created for each face, and �nally, basis functions are chosen for the elements. Critical

curves are accumulated in a linked list of line segments kept with each face in the scene.

The degree of the expected discontinuity is stored with each critical curve. to aid the choice

of basis functions later.

There are three classes of critical curves to be generated: those due to touching or

intersecting surfaces, VE critical lines, and EEE critical curves. We discuss VE lines in this

paper. EEE curves are more di�cult to handle [Teller92]. Baum discussed touching and

intersecting surfaces in [Baum et al. 91].

Figure 5 suggests an algorithm for determining all VE critical line segments. Half of the

critical segments can be generated by projecting the occluders from each of the vertices of

the emitter onto each of the other faces in the scene. The other half of the critical segments

are generated by projecting the emitter from each of the vertices of the occluders onto each

of the faces in the scene. (When we say \emitter" here, it could mean a secondary light

source). In [Campbell-Fussell90], the �rst half of these segments are approximated, but not

the second half.

For each triplet of emitter, occluder, and receiver leading to a discontinuity that is

deemed to be signi�cant, we �nd the VE wedge de�ned by a vertex of the emitter and an

edge of the occluder, and the VE wedge from a vertex of the occluder and an edge of the

emitter, determine the unoccluded portions of these wedges (�gure 7), and compute the

critical line segments of their intersection with the receiver.

To process each wedge, the line segments of intersection between the wedge plane and

each polygon are found, and then a 2-D object-space visible edge algorithm is used to

determine the edges visible from the point of view of the vertex. The algorithm used here

is a 2-D variant of the Weiler-Atherton visible surface algorithm [Atherton et al. 78] that

increased crispness of the shadows when edges of the paper are parallel to edges of the light source. The

radiance function has degree 1 discontinuities at parallel orientations, but degree 2 otherwise.
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Figure 7: Critical line segments due to vertex

v and edge e shown bold.

Figure 8: Visible edge determination

in the plane of the wedge. The visible

portions of the line segments of inter-

section between the wedge and the faces

in scene are the critical line segments.

Figure 9: Left: node and link data structure for critical lines. Right: topological data

structure for the planar subdivision.

maintains a linked list of unoccluded intervals, from which the intersection line segments

are subtracted in front to back order (�gure 8).

Once all of the critical line segments have been computed, a mesh for each face must be

generated that subdivides along the critical line segments. These meshes are signi�cantly

more complex than the uniform grids or quadtrees employed in early radiosity algorithms.

Therefore, a data structure supporting arbitrary planar subdivisions is recommended. The

data structure should allow holes, concave polygons, faces with any number of sides, vertices

of arbitrary degree, ordering of edges and faces around a vertex, and fast access to adjacent

objects. An extended winged edge data structure was used here [Baumgart74]. BSP trees

could also be used to represent the arrangement of critical lines on each face, but they

split polygons unnecessarily, constraining the space of meshes, and lead to poorer quality

meshes. Campbell employed BSP trees in his work [Campbell-Fussell90,Campbell91], and

went to great lengths to minimize excessive subdivision.

The mesh is created in a three step process. First, a node-and-link data structure is

created representing the endpoints of the critical lines and their adjacency graph (�gure 9,

left).

Next, the topology of the arrangement of critical line segments is computed by �nding all
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Figure 10: Critical lines of test

scene.

Figure 11: Triangle mesh resulting

from discontinuity meshing. Note

that it follows all of the critical lines.

intersections between critical lines, and subdividing the polygon into regions of homogeneous

visibility bounded by critical lines or edges of the original polygon (�gure 9, right). This

is done with a 2-D sweepline algorithm similar to a polygon clipping algorithm [Weiler80].

This step creates a winged edge data structure. As the sweepline passes across each vertex

or intersection point, the order of the emanating edges is found by a radial sort of the

geometry. This ordering determines the local topology, which is used to update the winged

edge data structure.

At this point, the topology and geometry of the arrangement of critical line segments is

known, but the subdivision may be unsuitable for �nite element radiosity purposes: faces of

this subdivision can be concave, with holes. The �nal step subdivides these regions accord-

ing to a user-selected maximum element size (�gures 10 and 11). Delaunay triangulation

and mesh relaxation were used here [Boender92], but it appears that there is considerable


exibility in this last step.

Once the mesh is constructed, basis functions are chosen for each element. If constant

elements are used, then each element has one degree of freedom, and all elements are

independent. If linear elements are used, then most vertices will contribute one degree of

freedom, but vertices along critical lines can contribute two or more degrees of freedom

depending on the discontinuity. Discontinuities in a �nite element mesh are analogous to

continuity constraints in a parametric curve or surface: basis functions should be selected

so that the approximation function is Cd�1 across a degree d critical curve. Each degree

of freedom in the �nite element mesh corresponds to a radiosity coe�cient in the system

of equations. To discuss the few remaining steps, we must review the generalization of

radiosity methods to arbitrary basis functions.

2.4 Finite Element Methods for Radiosity

There are a variety of �nite element methods for solving the integral equation governing

radiosity [Heckbert-Winget91].

Figure 12 shows some of the available options for radiosity simulation using a �nite
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Figure 12: Steps of �nite element simulation of radiosity.

element approach: one much choose a mesh and basis functions, constraint and integration

methods to reduce the problem to a linear system of equations, a system solution method,

and a display algorithm. For general references on �nite element methods and integral

equations, see the texts [Becker et al. 81] and [Delves-Mohamed85], respectively.

Radiosity obeys the integral equation [Heckbert-Winget91,Kajiya86]:

b(x) = e(x) +

Z
�

dx0 �(x;x0)b(x0)

where b(x) denotes the radiosity at 3-D point x, e(x) is radiant emitted 
ux density, and �

is the two-dimensional domain of all surfaces in the scene.

The kernel of the integral equation is

�(x;x0) = �h(x)
cos � cos �0

�r2
v

where x0 is another surface point, �h(x) is the hemispherical re
ectance, � is the angle at

x, �0 is the angle at x0, r is the distance between x and x0, and v, the visibility function, is

1 if points x and x0 are inter-visible; 0 if occluded. �, �0, v, and r are functions of x and x0.

To solve this integral equation numerically, the exact solution b(x) is approximated by

a linear combination of basis functions:

b̂(x) =
nX

i=1

biWi(x)

where bi are the unknown coe�cients and Wi are the basis functions.

The collocation method for approximation, which most current radiosity algorithms

employ, yields the following system of equations:

(M�K)b = e

where M and K are n� n matrices and b and e are n-element column vectors:

Mij =Wj(xi)

Kij =

Z
�

dx0 �(xi;x
0)Wj(x

0)

ei = e(xi)

where xi, the collocation points, are typically the centers or vertices of the elements. The

\form factors" here are the same as those of standard radiosity algorithms, except for the

non-constant basis functions.

The most di�cult factor in these integrations is the visibility function v, but this can be

evaluated using a hemicube [Cohen-Greenberg85] or ray tracing. Hemicube algorithms can

be generalized to evaluate linear basis functions using Gouraud shading [Max-Allison92].
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A variety of system solution methods can be used, as indicated in �gure 12, including

generic methods such as Gauss-Seidel iteration, its faster variant successive overrelaxation,

or specialized methods such as progressive radiosity. Display can be done using z-bu�er

algorithms or ray tracing, similar to integration.

2.5 Results

To test these ideas, a simple matrix radiosity program using ray traced form factors was

modi�ed. A matrix radiosity algorithm was used, rather than a progressive radiosity al-

gorithm, so that the errors of progressive radiosity would not mask the errors introduced

by the mesh. The linear system was solved by successive overrelaxation, a faster variant of

Gauss-Seidel iteration [Golub-Van Loan89]. The program was written in C. The original

small and simplistic uniform meshing module of about 150 lines of code was replaced by a

much larger, more sophisticated discontinuity meshing module of about 8000 lines. (Baum's

a posteriori adaptive mesh code was of similar size.) The modi�cations to the rest of the

program were minor. Only constant and Gouraud elements have been implemented to date.

Figure 13 shows the shadow of a touching occluder simulated with uniform meshing

and discontinuity meshing. The latter resolves the discontinuities much more accurately.

These pictures were made with Gouraud elements, which probably accounts for the rough

approximation of the shadows on the right. Much more accurate results could be expected

with linear, quadratic, or higher degree elements in combination with discontinuity meshing.

Figure 14 (top row), shows the shadow of a triangle from a square light source. Note

that the uniform mesh solution is quite blocky, while the discontinuity mesh solution is

much smoother, exhibiting major discontinuities only where they really exist. Figure 11

shows the arrangement of critical lines and the mesh used for this approximation. Relative

to the uniform mesh solution, discontinuity meshing used one fourth the number of elements

(it used 112) and half the CPU time. If a posteriori quadtree adaptive meshing to this level

were used, the number of elements and CPU time could be reduced, but the blocky artifacts

would still remain.

Note that the elements now follow the shadow edges, and the approximation resolves

the discontinuities in the true solution function more accurately. Because the mesh follows

the discontinuities precisely, the error of the solution in the vicinity of the discontinuity is

much reduced.

Figure 14 (bottom row), shows shadows from a distant light source (which is for all

practical purposes a point light source). Uniform meshing results in an extremely blocky

approximation, even with Gouraud shading, but discontinuity meshing resolves the degree

0 shadow edge exactly. Uniform meshing used 1600 elements, while discontinuity meshing

used only 60. Consequently, for this simulation, uniform meshing solves a 1600 � 1600

system of equations, while discontinuity meshing solves a 60� 60 system.

3 Conclusions and Ideas for Further Study

This work is an important step toward more rigorous treatment of radiance discontinuities

in 3-D scenes. The algorithms described here should help to minimize the errors of radiosity

solutions due to poor meshing. Such errors have heretofore been great.

We have shown that it is possible to �nd discontinuities in 3-D scenes and create a mesh

that resolves the discontinuities. Such meshes o�er the potential for faster and/or more

accurate radiosity simulations. Although discontinuity meshing and higher degree elements

are more complex than more brute force methods, they can pay o� because they allow a
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much coarser mesh to be used. The approach followed here allows very accurate solutions

to be explored. Alternative approaches using progressive radiosity and BSP trees appear to

be easier to implement [Campbell91,Chin-Feiner92], but the accuracy of their results has

not yet been demonstrated.

Although there are many discontinuities in most scenes, most of them are insigni�cant,

so it is likely that discontinuity meshing can be practical for complex scenes. Experiments

are needed to discover good measures of discontinuity signi�cance. The application of faster

computational geometry algorithms could help as well.

Further experiments are needed to test the accuracy and speed of linear, quadratic, and

higher degree elements. EEE critical curves should be treated. Finally, a thorough series of

experiments should be performed to determine the error due to each phase of the radiosity

algorithm.
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14 Discontinuity Meshing for Radiosity

Figure 13: Shadow of a nearly touching occluder. Left: uniform mesh solution, right:

discontinuity mesh solution. Uniform meshing leads to a \light leak" under the triangle,

while discontinuity meshing does not. Both solutions use Gouraud elements.

Figure 14: Four pictures on left: shadow of a triangle. Top row: shadow of a triangle from

a nearby square light source, bottom row: shadow of a triangle from a distant light source.

Left column: uniform mesh solution, right column: discontinuity mesh solution. Picture

on right: Demonstration of di�use interre
ection. Critical lines shown in red, sight lines

connecting vertices in blue.


