Visibility for Computer Graphics

Xavier Décoret
Master IVR 2004

Context (1/3)

= Models are costly to display

= Geometric complexity
o intersections in ray-tracing
© projection & rasterization in OpenGL/DX9
@ transmission (CPU «> GPU,server «> client)
= Appearance complexity
= We must treat only what's necessary
= Is it visible?
= How much is it visible? “Ce que I'on ne voit pas,

© LOD selection on peut l’ignorer.”
Graham Greene

Master IVR 3

Foreword

= Visibility in other domains
= Robotics
® path planning
= Vision

= V|S|b|||t¥ in CG . focus of
= Real-time rendering this talk
= Lighting computations

Master IVR

Context (2/3)

= Realism requires light simulation

« Shadow casting
© hard & soft shadows

= Light transport
© radiosity
= We must find amounts of light received
= Do | “see” a light source?

= How much do | “see” it?
® Umbra intensity

® Form factors ‘Le soleil ne sait rien de l'ombre.

Eugene Guillevic

Master IVR 4

What you will learn

= Stakes & issues
= Definitions & terminology

= Algorithms Toolkit

Master IVR

Context (3/3)

= Two domains of application

« Occlusion Culling Hardly Visible Sets [Andujar00]
© more about “is it visible?”

- nghtmg COmpUtatiOnS CC Shadow Volumes [Loyd03]
© more about “how much is visible?”
= Common problematic
« “What is seen from here in that direction?”

= Dual but equivalent terminology

Master IVR 5

Context (3/3)

= Two domains of application
focus of [Occlusion Culling

Hardly Visible Sets [Andujar00]

this talk ® more about “is it visible?”

« Lighting Computations CC Shadow Volumes [Loyd04]
© more about “how much is visible?”
= Common problematic
= “What is seen from here in that direction?”

= Dual but equivalent terminology

Master IVR 6

Occlusion culling (2/4)

= Definition
= Quickly reject what is not visible
= Go

educe unecesgary processing

= Meaning of “visible™?
early = no ray from eye to element
cheaply « do not contribute to final image

= The problem of granularity
= Cost vs. benefit
® OpenGL optimizations
© Bounding volumes
= Hierarchical culling Master IVR 9

Occlusion culling (1/4)

= Definition
= Quickly reject what is not visible
= Goal
= Reduce unecessary processing
= Ex: “How do you draw a white wall?”

* draw the terrain behind
* draw a castle on the terrain

« draw trees around the castle
and cattle in the field

* draw the white wall !

Master IVR 7

Occlusion culling (3/4)

= Definition
= Quickly reject what is not visible

= Goal
= Reduce unecessary processing

= Example
= Hierarchical Frustum Culling bouding volume hierarchy

= Dovedonitos

Master IVR 10

scene elements

Hidden Face Removal

= Definition
= For each ray/pixel, find visible surface

= Goal
= Guarantee image is “correct”

= Hidden Face Removal vs. Occlusion Culling

Imaging process

idden Face
D D
uce UnecessEYy |—z-huffer
3D ﬁﬁ? overdrawrasterize Tmage
Mastor VR s

ex: OpenGL

Occlusion culling (3/4)

= Definition
= Quickly reject what is not visible
= Goal
= Reduce unecessary processing
= Example
= Hierarchical Frustum Culling bouding volume hierarchy
A B
A B C D
% ™~
2.
*,3 N~
% Optimized [Assarson00]
2 dPVS [Aila02]
S D Master IVR 11

Occlusion culling (4/4)

= Terminology

= Viewpoint/viewcell
a point/region from where we compute visibility

« Visible Set

the set of elements exactly visible from a viewpoint/viewcell
= Potentially Visible Set
the set an algorithm thinks is visible from a viewpoint/viewcell
= Classification
= Conservative VS c PVS

« Aggressive VS ¢ PVS
veeVS/PVS e is hardly visible

Master IVR 12

What causes occlusion

= An occludee is hidden by several occluders
= QOccluder fusion is important
= Occluder fusion is difficult to account for

= from point: fused umbra

£ umbea
H fused umbra

— 13 — 1y

dccluder
occhuder

;_l umbra

Master IVR 15

From point vs. From region

= Two approaches for culling
« Compute PVS online for current viewpoint
= Compute PVS offline for finite # of viewcells
@ partition the navigable space in viewcells
@ pre-compute PVS offline for every viewcells
© approximate PVS(viewpoint) by PVS(viewcell > viewpoint)

= From region visibility also useful for
= database pre-fetching
= viewcell placement
= Analogy with area vs. point light sources

Master IVR 13

What causes occlusion

= An occludee is hidden by several occluders
= QOccluder fusion is important
= QOccluder fusion is difficult to account for

« from point : fused umbra
= from region : fused umbra and penumbra

The Erosion Theorem

= From point — from region
= Reduce occluders and occludees

= Different of “Extended Projections” [purandoo]
= erode occluders, enlarge occludees
= use projections on plane

[Wonka00]
[Decoret03]

Figure

Master IVR 14

Occlusion in ray-space (1/2)

= Set of rays S from viewpoint/cell to occludee
= Each occluder blocks a set of rays B;

= Hidden iff the union of B, is dense in S
= we ignore “single” unblocked rays
= computations in dual space

[Bittner01]

Master IVR 17

Occlusion in ray-space (2/2)

= Feasible in 272D Bittnero1]

= Harder in 3D
= Ray-space is 4D embedded in 5D (Pliicker)
= Feasible exactly [Nirenstein00] but slow
= Conservative factorization [Leyvand03]

= Robustness issues
= Epsilon visibility [Duguet02]

Master IVR 18

Cell and portals

= Architectural environments
= Cells connected by portals

= Cells are visible through

sequence of portals
« pre-process [Teller91]

Master IVR

S

21

Ray-space factorization [Leyvandos)

«from region
= *separate horizontal/vertical
o ' +horizontal: exact

svertical: conservative
<hardware accelerated
«very fast

Cell and portals

= Architectural environments
= Cells connected by portals
= Cells are visible through
sequence of portals
= pre-process [Teller91]
« dynamic [Luebke95]

Master IVR

IR 05

Various algorithms

= |s it conservative?

= What kind of occlusion can it detect?
= What kind of scene can it handle?

= |s it offline or online?

= What is the complexity?
= Theoretical complexity (cpu/memory)
= Implementation complexity

= Does it work with moving objects?

Master IVR 20

Cell and portals

= Architectural environments

= Cells connected by portals | I o
= Cells are visible through -l 7]
sequence of portals] I C
+ pre-process [Tellerd1] =t |_j=cB
+ dynamic [Luebke95] S P)
= Finding cells and portals =g a

= Floodfill [Haumont03] - oe
© robustness to input

Master IVR

Cell and portals

= Architectural environments
= Cells connected by portals
= Cells are visible through
sequence of portals
« pre-process [Teller91]
= dynamic [Luebke95]
= Finding cells and portals
« Floodfill [Haumont03]
© robustness to input
= Two pass [Lerner03]
© initial partition
© optimization of cells/portals

Master IVR 2

Occlusion map based algorithms

= QOccluder selection
= Big occluders

= Front-to-back traversal
© BSP
© Kd-trees

= Temporal coherency
= Occlusion map testing
= Hierarchical Occlusion Map [zhang97]

= Hierarchical Z-buffer [Green93]
© used by hardware [HyperZ]
= Occlusion queries [Bittner04]

Master IVR 27

Voxelisation
= Voxelize scene ﬂ""
- f

rasterize polygons in an octree M #‘

« Occlude by opaque voxels
o interior voxels 'Z'j——‘_ -
® previously occluded voxels

= Use simple shaft culling

= Perform blocker extension

- find interior/exterior by floodfill f’" f'", é
= Visibility of pairs of cells ! -

= Use hierarchy to speed-up

Hardware based occlusion culling

= Use Z-buffer power to test ocludee
= start query
= render occludee’s bounding volume OpenGL API
= read back number of “visible” pixels ARB_ocdlusion_query
= Interleave with rendering
" Goal iS tO aVOid oo [Ri] R R) Ral g4 AL Hl
© CPU stalls e

P R[] R R4]
© GPU starvation .

= Needs pulls up/downs

i i A1
G R R]]] el e

Master IVR 28

Occlusion map based algorithms

= Online from point method

= Overall algorithm
= Select “good” occluders

= Render them in an occlusion map
o disable everything but depth

« Test occludee’s against occlusion map
© use bounding volume
© use hierarchy

= Proceed in several steps
= Image space accuracy

Master IVR 2

Hardware based occlusion culling

—VFC

1000

— S&W
——CHC
Tdeal

10

frame time [log ms]

1 401 BO1 1200 1601 2001 24001 2801 32001 3601 4001
frame number

Master IVR 29

Horizon culling

= Overall algorithm
- Render front-to-back w
= Maintain conservative horizon
= Test occludee against horizon P
= Suitable to 2D scenes ﬁ
= Terrain rendering [Loyd02]
= Urban scenery [Downs01]

Master IVR 30

PVS compression

= From region visibility
= How do you place viewcells?
« How do you represent the PVS efficiently?
= Qverall approach
= Use small viewcells
« Compare adjacent viewcells
« Merge if PVS are “closed”
= Visibility matrix [pePanne99]

= lossless/lossy
= RLE + clusterization

Otherworkby[zachOS] .:. | -I

Master IVR 31

Conclusion

= A very rich field
= http://artis.imag.fr/~Xavier.Decoret/bib/visibility/
= Just an overview!
= Keep in mind
= What's difficult
® occluder fusion

= How to evaluate/choose an algorithm
© from region/from point
@ online vs. offline
© exact/conservative/aggressive [Nirenstein04]
© image space vs. object space

Master IVR £y

